摘要:1.通过实例引入二次函数.理解二次函数的概念.
网址:http://m.1010jiajiao.com/timu3_id_484751[举报]
市政府实施“万元增收工程”.农户小王自主创业,承包了部分土地种植果树.根据科学种植的经验,平均每棵甲种果树的产量y(千克)与种植棵数x(棵)之间满足关系y=-0.2x+40,平均每棵乙种果树的产量z(千克)与种植棵数x(棵)之间的部分对应值如下表:
(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识求出平均每棵乙种果树的产量z(千克)与种植棵数x(棵)之间的函数关系式;
(2)若小王种植甲、乙两种果树共200棵,其中种植甲种果树m棵,且甲种果树的种植数量不超过总数量的40%,试求果园的总产量w(千克)与甲种果树的种植数量w(棵)之间的函数关系式,并求出小王种植甲种果树多少棵时,果园的总产量最大,最大是多少?
(3)果园丰收,获得最大总产量.小王希望将两种水果均以6元/千克销售完.可按预计价格销 售时销量不佳,只售出了总产量的
.于是小王将售价降低a%,并迅速销售了总产量的
,这时,小王觉得这样销售下去不划算,于是又在降价后的价格基础上提价0.7a%把剩余水果卖完.最终一算,小王所得收益仅比原预期收益少2160元.请通过计算估计出整数a的值.
(参考数据:352=1225,362=1296,372=1369,382=1444) 查看习题详情和答案>>
| 种植棵数x(棵) | 60 | 65 | 80 | 92 |
| 平均每棵乙种果树的产量z(千克) | 32 | 30.5 | 26 | 22.4 |
(2)若小王种植甲、乙两种果树共200棵,其中种植甲种果树m棵,且甲种果树的种植数量不超过总数量的40%,试求果园的总产量w(千克)与甲种果树的种植数量w(棵)之间的函数关系式,并求出小王种植甲种果树多少棵时,果园的总产量最大,最大是多少?
(3)果园丰收,获得最大总产量.小王希望将两种水果均以6元/千克销售完.可按预计价格销 售时销量不佳,只售出了总产量的
| 1 |
| 6 |
| 1 |
| 3 |
(参考数据:352=1225,362=1296,372=1369,382=1444) 查看习题详情和答案>>
24、公司准备投资开发A、B两种新产品,通过市场调研发现:如果单独投资A种产品,则所获利润(万元)与投资金额x(万元)之间满足正比例函数关系:yA=kx;如果单独投资B种产品,则所获利润(万元)与投资金额x(万元)之间满足二次函数关系:yB=ax2+bx.根据公司信息部的报告,yA,yB(万元)与投资金额x(万元)的部分对应值(如表).
(1)填空:yA=;yB=;
(2)如果公司准备投资20万元同时开发A,B两种新产品,请你设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少万元?
(3)如果公司采用以下投资策略:相同的投资金额哪种方式获利大就选哪种,且财务部给出的投资金额为10至15万元.请你帮助保障部预测(直接写出结果):公司按这种投资策略最少可获利多少万元?
查看习题详情和答案>>
| x | 1 | 5 |
| yA | 0.6 | 3 |
| yB | 2.8 | 10 |
(2)如果公司准备投资20万元同时开发A,B两种新产品,请你设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少万元?
(3)如果公司采用以下投资策略:相同的投资金额哪种方式获利大就选哪种,且财务部给出的投资金额为10至15万元.请你帮助保障部预测(直接写出结果):公司按这种投资策略最少可获利多少万元?
问题背景:
若矩形的周长为1,则可求出该矩形面积的最大值.我们可以设矩形的一边长为x,面积为s,则s与x的函数关系式为:s=-x2+
x(x>0),利用函数的图象或通过配方均可求得该函数的最大值.
提出新问题:
若矩形的面积为1,则该矩形的周长有无最大值或最小值?若有,最大(小)值是多少?
分析问题:
若设该矩形的一边长为x,周长为y,则y与x的函数关系式为:y=2(x+
)(x>0),问题就转化为研究该函数的最大(小)值了.
解决问题:
借鉴我们已有的研究函数的经验,探索函数y=2(x+
)(x>0)的最大(小)值.
(1)实践操作:填写下表,并用描点法画出函数y=2(x+
)(x>0)的图象:
(2)观察猜想:观察该函数的图象,猜想当x=
)(x>0)有最
(3)推理论证:问题背景中提到,通过配方可求二次函数s=-x2+
x(x>0)的最大值,请你尝试通过配方求函数y=2(x+
)(x>0)的最大(小)值,以证明你的猜想.〔提示:当x>0时,x=(
)2〕
查看习题详情和答案>>
若矩形的周长为1,则可求出该矩形面积的最大值.我们可以设矩形的一边长为x,面积为s,则s与x的函数关系式为:s=-x2+
| 1 |
| 2 |
提出新问题:
若矩形的面积为1,则该矩形的周长有无最大值或最小值?若有,最大(小)值是多少?
分析问题:
若设该矩形的一边长为x,周长为y,则y与x的函数关系式为:y=2(x+
| 1 |
| x |
解决问题:
借鉴我们已有的研究函数的经验,探索函数y=2(x+
| 1 |
| x |
(1)实践操作:填写下表,并用描点法画出函数y=2(x+
| 1 |
| x |
| x | … | 1/4 | 1/3 | 1/2 | 1 | 2 | 3 | 4 | … | ||||||||
| y | … |
|
|
5 | 4 | 5 |
|
|
… |
1
1
时,函数y=2(x+| 1 |
| x |
小
小
值(填“大”或“小”),是4
4
.(3)推理论证:问题背景中提到,通过配方可求二次函数s=-x2+
| 1 |
| 2 |
| 1 |
| x |
| x |