摘要: 三角形的三个顶点确定 个圆.这个圆叫做三角形的外接圆.三角形的外接圆的圆心叫 心.是三角形 的交点.
网址:http://m.1010jiajiao.com/timu3_id_466861[举报]
1.不在同一条直线上的________个点确定一个圆;
2.三角形的三个顶点确定一个圆,这个圆叫做三角形的________,外接圆的圆心是三角形三边垂直平分线的________,叫做三角形的________.
在课堂上,郝老师将一个三角板的直角顶点与点C重合,它的两条直角边也分别与x轴正半轴、y轴正半轴相交于E点、D点.当三角板绕点C旋转到与x轴、y轴垂直时,如图1,已知射线OM为第一象限的角平分线,C点的坐标为(2,2)

(1)四边形ODCE的面积是
(2)当郝老师将三角板绕点C旋转到与x轴、y轴不垂直时,如图2,姚小明同学马上举手回答说,在旋转过程中,四边形ODCE的面积始终保持不变,其值为定值.老师说他的回答是正确的!请你说明其中的道理.
(3)最后,郝老师过D、O、E三点画⊙O1,如图3,设△DOE的内切圆的直径为d,并用肯定的语气说,不论⊙O1的大小、位置如何变化,d+DE的值永远不变.同学们,你们知道这里的奥妙吗?请说明理由.
查看习题详情和答案>>
(1)四边形ODCE的面积是
4
4
;点D的坐标为(0,2)
(0,2)
;点E的坐标为(2,0)
(2,0)
.(2)当郝老师将三角板绕点C旋转到与x轴、y轴不垂直时,如图2,姚小明同学马上举手回答说,在旋转过程中,四边形ODCE的面积始终保持不变,其值为定值.老师说他的回答是正确的!请你说明其中的道理.
(3)最后,郝老师过D、O、E三点画⊙O1,如图3,设△DOE的内切圆的直径为d,并用肯定的语气说,不论⊙O1的大小、位置如何变化,d+DE的值永远不变.同学们,你们知道这里的奥妙吗?请说明理由.
在课堂上,郝老师将一个三角板的直角顶点与点C重合,它的两条直角边也分别与x轴正半轴、y轴正半轴相交于E点、D点.当三角板绕点C旋转到与x轴、y轴垂直时,如图1,已知射线OM为第一象限的角平分线,C点的坐标为(2,2)

(1)四边形ODCE的面积是______;点D的坐标为______;点E的坐标为______.
(2)当郝老师将三角板绕点C旋转到与x轴、y轴不垂直时,如图2,姚小明同学马上举手回答说,在旋转过程中,四边形ODCE的面积始终保持不变,其值为定值.老师说他的回答是正确的!请你说明其中的道理.
(3)最后,郝老师过D、O、E三点画⊙O1,如图3,设△DOE的内切圆的直径为d,并用肯定的语气说,不论⊙O1的大小、位置如何变化,d+DE的值永远不变.同学们,你们知道这里的奥妙吗?请说明理由.
查看习题详情和答案>>
(1)四边形ODCE的面积是______;点D的坐标为______;点E的坐标为______.
(2)当郝老师将三角板绕点C旋转到与x轴、y轴不垂直时,如图2,姚小明同学马上举手回答说,在旋转过程中,四边形ODCE的面积始终保持不变,其值为定值.老师说他的回答是正确的!请你说明其中的道理.
(3)最后,郝老师过D、O、E三点画⊙O1,如图3,设△DOE的内切圆的直径为d,并用肯定的语气说,不论⊙O1的大小、位置如何变化,d+DE的值永远不变.同学们,你们知道这里的奥妙吗?请说明理由.
查看习题详情和答案>>