摘要: 解:解.得. 解.得.所以.原不等式组的解集是.
网址:http://m.1010jiajiao.com/timu3_id_466404[举报]
例:解不等式:
解:把不等式
进行整理,得
即
,
则有 (1)
(2)
解不等式(1)得:x>1,解不等式(2)得:x<-4.
所以原不等式的解集是:x<-4 或x>1.
请根据以上解不等式的思想方法解不等式:
.
查看习题详情和答案>>
在解不等式|x+1|>2时,我们可以采用下面的解答方法:
①当x+1≥0时,|x+1|=x+1.
∴由原不等式得x+1>2.∴可得不等式组
∴解得不等式组的解集为x>1.
②当x+1<0时,|x+1|=-(x+1).
∴由原不等式得-(x+1)>2.∴可得不等式组
∴解得不等式组的解集为x<-3.
综上所述,原不等式的解集为x>1或x<-3.
请你仿照上述方法,尝试解不等式|x-2|≤1.
查看习题详情和答案>>
在解不等式|x+1|>2时,我们可以采用下面的解答方法:
①当x+1≥0时,|x+1|=x+1.
∴由原不等式得x+1>2.∴可得不等式组
∴解得不等式组的解集为x>1.
②当x+1<0时,|x+1|=-(x+1).
∴由原不等式得-(x+1)>2.∴可得不等式组
∴解得不等式组的解集为x<-3.
综上所述,原不等式的解集为x>1或x<-3.
请你仿照上述方法,尝试解不等式|x-2|≤1.
查看习题详情和答案>>
①当x+1≥0时,|x+1|=x+1.
∴由原不等式得x+1>2.∴可得不等式组
|
∴解得不等式组的解集为x>1.
②当x+1<0时,|x+1|=-(x+1).
∴由原不等式得-(x+1)>2.∴可得不等式组
|
∴解得不等式组的解集为x<-3.
综上所述,原不等式的解集为x>1或x<-3.
请你仿照上述方法,尝试解不等式|x-2|≤1.