网址:http://m.1010jiajiao.com/timu3_id_458184[举报]
引例:设a,b,c为非负实数,求证:
| a2+b2 |
| b2+c2 |
| c2+a2 |
| 2 |
分析:考虑不等式中各式的几何意义,我们可以试构造一个边长为a
解:如图①设正方形的边长为a+b+c,
则AB=
| a2+b2 |
BC=
| b2+c 2 |
CD=
| a2+c2 |
显然AB+BC+CD≥AD,
∴
| a2+b2 |
| b2+c2 |
| c2+a2 |
| 2 |
探究一:已知两个正数x、y,满足x+y=12,求
| x2+4 |
| y2+9 |
解:(图②仅供参考)
探究二:若a、b为正数,求以
| a2+b2 |
| 4a2+b2 |
| a2+4b2 |
等边△ABC边长为6,P为BC边上一点,∠MPN=60°,且PM、PN分别于边AB、AC交于点E、F.(1)如图1,当点P为BC的三等分点,且PE⊥AB时,判断△EPF的形状;
![]()
(2)如图2,若点P在BC边上运动,且保持PE⊥AB,设BP=x,四边形AEPF面积的y,求y与x的函数关系式,并写出自变量x的取值范围;
(3)如图3,若点P在BC边上运动,且∠MPN绕点P旋转,当CF=AE=2时,求PE的长.
【解析】(1)要证三角形EPF是等边三角形,已知了∠EPF=60°,主要再证得PE=PF即可,可通过证三角形PBE和PFC全等来得出结论,再证明全等过程中,可通过证明FP⊥BC和BE=PC来实现;
(2)根据△ABC的面积-△BEP的面积-△CFP的面积=四边形AEPF面积求解
(3)由相似三角形的判定定理得出△BPE∽△CFP,设BP=x,则CP=6-x,由相似三角形的对应边成比例可求出x的值,再根据勾股定理求出PE的值即可
查看习题详情和答案>>
等边△ABC边长为6,P为BC边上一点,∠MPN=60°,且PM、PN分别于边AB、AC交于点E、F.(1)如图1,当点P为BC的三等分点,且PE⊥AB时,判断△EPF的形状;
![]()
(2)如图2,若点P在BC边上运动,且保持PE⊥AB,设BP=x,四边形AEPF面积的y,求y与x的函数关系式,并写出自变量x的取值范围;
(3)如图3,若点P在BC边上运动,且∠MPN绕点P旋转,当CF=AE=2时,求PE的长.
【解析】(1)要证三角形EPF是等边三角形,已知了∠EPF=60°,主要再证得PE=PF即可,可通过证三角形PBE和PFC全等来得出结论,再证明全等过程中,可通过证明FP⊥BC和BE=PC来实现;
(2)根据△ABC的面积-△BEP的面积-△CFP的面积=四边形AEPF面积求解
(3)由相似三角形的判定定理得出△BPE∽△CFP,设BP=x,则CP=6-x,由相似三角形的对应边成比例可求出x的值,再根据勾股定理求出PE的值即可
查看习题详情和答案>>