网址:http://m.1010jiajiao.com/timu3_id_457671[举报]
借助东、南、西、北的方位,用射线来表示方向,我们常称这种角叫做方位角.这种方位角表示有一定的要求:第一个字先写南或北(即以南、北为基准),然后再写偏东或偏西多少度.如图,射线OA表示的方向是北偏东30°(注意:不能写成东偏北60°),射线OB表示的方向是南偏西60°(注意:不能写成西偏南30°).特别地,当射线为四个直角的角平分线时,分别称:东北方向,西北方向,西南方向,东南方向.考察队从A地出发,沿北偏东60°方向前进了5 km到达B地,再沿东南方向前进到C地,C地正好在A的正东方向.
(1)按1∶200 000的比例画出考察队行进路线图.
(2)测量∠ABC和∠BCA的度数.
(1)在点P运动过程中,试判断AB与y轴的位置关系,并说明理由;
(2)设点P与直线l都运动了t秒,求此时的矩形OAPB与直线l在运动过程中所扫过区域的重叠部分的面积S(用含t的代数式表示)。
操作与探索:
已知点O为直线AB上一点,作射线OC,将直角三角板ODE放置在直线上方(如图①),使直角顶点与点O重合,一条直角边OD重叠在射线OA上,将三角板绕点O旋转![]()
(1)当三角板旋转到如图②的位置时,若OD平分∠AOC,试说明OE也平分∠BOC.
(2)若OC⊥AB,垂足为点O(如图③),请直接写出与∠DOB互补的角
(3)若∠AOC=135°(如图④),三角板绕点O按顺时针从如图①的位置开始旋转,到OE边与射线OB重合结束. 请通过操作,探索:在旋转过程中,∠DOB
∠COE的差是否发生变化?若不变,请求出这个差值;若变化,请用含有n(n为三角板旋转的度数)的代数式表示这个差.
操作与探索:
已知点O为直线AB上一点,作射线OC,将直角三角板ODE放置在直线上方(如图①),使直角顶点与点O重合,一条直角边OD重叠在射线OA上,将三角板绕点O旋转
![]()
(1)当三角板旋转到如图②的位置时,若OD平分∠AOC,试说明OE也平分∠BOC.
(2)若OC⊥AB,垂足为点O(如图③),请直接写出与∠DOB互补的角
(3)若∠AOC=135°(如图④),三角板绕点O按顺时针从如图①的位置开始旋转,到OE边与射线OB重合结束. 请通过操作,探索:在旋转过程中,∠DOB
∠COE的差是否发生变化?若不变,请求出这个差值;若变化,请用含有n(n为三角板旋转的度数)的代数式表示这个差.
查看习题详情和答案>>
已知点O为直线AB上一点,作射线OC,将直角三角板ODE放置在直线上方(如图①),使直角顶点与点O重合,一条直角边OD重叠在射线OA上,将三角板绕点O旋转
(1)当三角板旋转到如图②的位置时,若OD平分∠AOC,试说明OE也平分∠BOC.
(2)若OC⊥AB,垂足为点O(如图③),请直接写出与∠DOB互补的角
(3)若∠AOC=135°(如图④),三角板绕点O按顺时针从如图①的位置开始旋转,到OE边与射线OB重合结束. 请通过操作,探索:在旋转过程中,∠DOB