摘要:例1.已知知线段a和b.如下图.求作一线段.使它的长度等于a+b. a b 作法:1.作 OA
网址:http://m.1010jiajiao.com/timu3_id_456699[举报]
如图,以△ABC的边AB、AC为直角边向外作等腰直角△ABE和△ACD,M是BC的中点,请你探究线段DE与AM之间的关系.
说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写3步);
(2)在你经历说明(1)的过程之后,可以从下列①、②中选取一个补充或更换已知条件,完成你的证明.
①画出将△ACM绕某一点顺时针旋转180°后的图形;
②∠BAC=90°(如图)
附加题:如图,若以△ABC的边AB、AC为直角边,向内作等腰直角△ABE和△ACD,其它条件不变,试探究线段DE与AM之间的关系.
查看习题详情和答案>>
说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写3步);
(2)在你经历说明(1)的过程之后,可以从下列①、②中选取一个补充或更换已知条件,完成你的证明.
①画出将△ACM绕某一点顺时针旋转180°后的图形;
②∠BAC=90°(如图)
附加题:如图,若以△ABC的边AB、AC为直角边,向内作等腰直角△ABE和△ACD,其它条件不变,试探究线段DE与AM之间的关系.
求证:BD=CE
(1)根据下面说理步骤填空
证法一:作AM⊥BC,垂足为M.
∵AB=AC(
已知
) AM⊥BC( 辅助线 )∴BM=CM(
三线合一
)同理DM=EM.
∴BM-DM=CM-EM(
等量代换
)∴BD=CE(线段和、差的意义)
(2)根据下面证法二的辅助线完成后面的说理步骤.
证法二:作△ABC的中线AM.
如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(-3,0)、(0,4),抛物线
经过B点,且顶点在直线
上.
![]()
1.求抛物线对应的函数关系式;
2.若△DCE是由△ABO沿x轴向右平移得到的,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由
3.在(2)的条件下,连结BD,已知在对称轴上存在一点P,使得△PBD的周长最小.请求出点P的坐标.
4.在(2)、(3)的条件下,若点M是线段OB上的一个动点(与点O、B不重合),过点M作MN∥BD交x轴于点N,连结PM、PN,设OM的长为t,△PMN的面积为S,求S与t的函数关系式,并写出自变量t的取值范围.S是否存在最大值?若存在,求出最大值并求此时M点的坐标;若不存在,请说明理由.
查看习题详情和答案>>
如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(-3,0)、(0,4),抛物线
经过B点,且顶点在直线
上.

【小题1】求抛物线对应的函数关系式;
【小题2】若△DCE是由△ABO沿x轴向右平移得到的,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由
【小题3】在(2)的条件下,连结BD,已知在对称轴上存在一点P,使得△PBD的周长最小.请求出点P的坐标.
【小题4】在(2)、(3)的条件下,若点M是线段OB上的一个动点(与点O、B不重合),过点M作MN∥BD交x轴于点N,连结PM、PN,设OM的长为t,△PMN的面积为S,求S与t的函数关系式,并写出自变量t的取值范围.S是否存在最大值?若存在,求出最大值并求此时M点的坐标;若不存在,请说明理由. 查看习题详情和答案>>
【小题1】求抛物线对应的函数关系式;
【小题2】若△DCE是由△ABO沿x轴向右平移得到的,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由
【小题3】在(2)的条件下,连结BD,已知在对称轴上存在一点P,使得△PBD的周长最小.请求出点P的坐标.
【小题4】在(2)、(3)的条件下,若点M是线段OB上的一个动点(与点O、B不重合),过点M作MN∥BD交x轴于点N,连结PM、PN,设OM的长为t,△PMN的面积为S,求S与t的函数关系式,并写出自变量t的取值范围.S是否存在最大值?若存在,求出最大值并求此时M点的坐标;若不存在,请说明理由. 查看习题详情和答案>>