摘要:19.已知.求的值. [解]原式===. 当时,原式==
网址:http://m.1010jiajiao.com/timu3_id_455505[举报]
已知,如图,在直角坐标系中,以y轴上的点C为圆心,2为半径的圆与x轴相切于原点O,点P在x轴的负半轴上,PA切⊙C于点A,AB为⊙C的直径,PC交OA于点D.
(1)求证:PC⊥OA;
(2)若△APO为等边三角形,求直线AB的解析式;
(3)若点P在x轴的负半轴上运动,原题的其他条件不变,设点P的坐标为(x,0),四边形POCA的面积为S,求S与点P的横坐标x之间的函数关系式,并写出自变量的取值范围;
(4)当点P在x轴的负半轴上运动时,原题的其他条件不变,分析并判断是否存在这样的一点
P,使S四边形POCA=S△AOB?若存在,请直接写出点P的坐标;若不存在,请简要说明理由.
查看习题详情和答案>>
(1)求证:PC⊥OA;
(2)若△APO为等边三角形,求直线AB的解析式;
(3)若点P在x轴的负半轴上运动,原题的其他条件不变,设点P的坐标为(x,0),四边形POCA的面积为S,求S与点P的横坐标x之间的函数关系式,并写出自变量的取值范围;
(4)当点P在x轴的负半轴上运动时,原题的其他条件不变,分析并判断是否存在这样的一点
已知,抛物线y=ax2-2ax-3与x轴交于A(-1,0)和B两点,与y轴交于点C,其顶点为M.
(1)求a的值和M的坐标;
(2)将抛物线平移,使其顶点在射线CB上,且A点的对应点为A′,若S△A'AC=9,求平移后的抛物线的解析式;
(3)如图2,将原抛物线x轴下方的部分沿x轴翻折到x轴上方得到新图象,当直线y=kx-2k+5与新图象有三个公共点时,求k的值.

查看习题详情和答案>>
已知,如图,在直角坐标系中,以y轴上的点C为圆心,2为半径的圆与x轴相切于原点O,点P在x轴的负半轴上,PA切⊙C于点A,AB为⊙C的直径,PC交OA于点D.
(1)求证:PC⊥OA;
(2)若△APO为等边三角形,求直线AB的解析式;
(3)若点P在x轴的负半轴上运动,原题的其他条件不变,设点P的坐标为(x,0),四边形POCA的面积为S,求S与点P的横坐标x之间的函数关系式,并写出自变量的取值范围;
(4)当点P在x轴的负半轴上运动时,原题的其他条件不变,分析并判断是否存在这样的一点
P,使S四边形POCA=S△AOB?若存在,请直接写出点P的坐标;若不存在,请简要说明理由.
查看习题详情和答案>>
已知,如图,在直角坐标系中,以y轴上的点C为圆心,2为半径的圆与x轴相切于原点O,点P在x轴的负半轴上,PA切⊙C于点A,AB为⊙C的直径,PC交OA于点D.
(1)求证:PC⊥OA;
(2)若△APO为等边三角形,求直线AB的解析式;
(3)若点P在x轴的负半轴上运动,原题的其他条件不变,设点P的坐标为(x,0),四边形POCA的面积为S,求S与点P的横坐标x之间的函数关系式,并写出自变量的取值范围;
(4)当点P在x轴的负半轴上运动时,原题的其他条件不变,分析并判断是否存在这样的一点P,使S四边形POCA=S△AOB?若存在,请直接写出点P的坐标;若不存在,请简要说明理由.
查看习题详情和答案>>
(1)求证:PC⊥OA;
(2)若△APO为等边三角形,求直线AB的解析式;
(3)若点P在x轴的负半轴上运动,原题的其他条件不变,设点P的坐标为(x,0),四边形POCA的面积为S,求S与点P的横坐标x之间的函数关系式,并写出自变量的取值范围;
(4)当点P在x轴的负半轴上运动时,原题的其他条件不变,分析并判断是否存在这样的一点P,使S四边形POCA=S△AOB?若存在,请直接写出点P的坐标;若不存在,请简要说明理由.
已知,如图,在直角坐标系中,以y轴上的点C为圆心,2为半径的圆与x轴相切于原点O,点P在x轴的负半轴上,PA切⊙C于点A,AB为⊙C的直径,PC交OA于点D.
(1)求证:PC⊥OA;
(2)若△APO为等边三角形,求直线AB的解析式;
(3)若点P在x轴的负半轴上运动,原题的其他条件不变,设点P的坐标为(x,0),四边形POCA的面积为S,求S与点P的横坐标x之间的函数关系式,并写出自变量的取值范围;
(4)当点P在x轴的负半轴上运动时,原题的其他条件不变,分析并判断是否存在这样的一点
P,使S四边形POCA=S△AOB?若存在,请直接写出点P的坐标;若不存在,请简要说明理由.
查看习题详情和答案>>
(1)求证:PC⊥OA;
(2)若△APO为等边三角形,求直线AB的解析式;
(3)若点P在x轴的负半轴上运动,原题的其他条件不变,设点P的坐标为(x,0),四边形POCA的面积为S,求S与点P的横坐标x之间的函数关系式,并写出自变量的取值范围;
(4)当点P在x轴的负半轴上运动时,原题的其他条件不变,分析并判断是否存在这样的一点