摘要:23.已知:如图.在□ABCD中.BE.CE分别平分∠ABC.∠BCD.E在AD上. BE=12 cm.CE=5 cm.求□ABCD的周长和面积. [提示]证明BE⊥EC和E为AD中点. [答案]在□ABCD中. ∵ AB∥CD. ∴ ∠ABC+∠BCD=180°. ∵ ∠ABE=∠EBC.∠BCE=∠ECD. ∴ ∠EBC+∠BCE=(∠ABC+∠BCD)=90°. ∴ ∠BEC=90°. ∴ BC2=BE2+CE2=122+52=132. ∴ BC=13. ∵ AD∥BC. ∴ ∠AEB=∠EBC. ∴ ∠AEB=∠ABE. ∴ AB=AE. 同理 CD=ED. ∵ AB=CD. ∴ AB=AE=CD=ED=BC=6.5. ∴ □ABCD的周长=2(AB+BC)=2=39. S□ABCD=2 S△BCE=2·BE·EC =12×5=60.
网址:http://m.1010jiajiao.com/timu3_id_455361[举报]