摘要:如图2.四边形ABCD为矩形纸片.把纸片ABCD折叠.使点B恰好落在CD边的中点E处.折痕为AF.若CD=6.则AF等于 ( )A (A) (B) (C) (D)8
网址:http://m.1010jiajiao.com/timu3_id_455088[举报]
如图1,四边形ABCD为正方形,点A在y轴上,点B在x轴上,且OA=4,OB=2,反比例函数y=
(k≠0)在第一象限的图象经过正方形的顶点C.
(1)求点C的坐标和反比例函数的关系式;
(2)如图2,将正方形ABCD沿x轴向右平移
(3)在(2)的情况下,连结AO并延长它,交反比例函数的图象于点Q,点P是x轴上的一个动点(不与点O、B重合),
①当点P的坐标为多少时,四边形ABQP是矩形?请说明理由.
②过点A作AF⊥x轴于点F,问:当点P的坐标为多少时,△PAF与△OAF相似?(直接写出答案)

查看习题详情和答案>>
| k | x |
(1)求点C的坐标和反比例函数的关系式;
(2)如图2,将正方形ABCD沿x轴向右平移
3
3
个单位长度时,点A恰好落在反比例函数的图象上.(3)在(2)的情况下,连结AO并延长它,交反比例函数的图象于点Q,点P是x轴上的一个动点(不与点O、B重合),
①当点P的坐标为多少时,四边形ABQP是矩形?请说明理由.
②过点A作AF⊥x轴于点F,问:当点P的坐标为多少时,△PAF与△OAF相似?(直接写出答案)
已知:在四边形ABCD中,AB=1,E、F、G、H分别时AB、BC、CD、DA上的点,且AE=BF=CG=DH.设四边形EFGH的面积为S,AE=x(0≤x≤1).
(1)如图①,当四边形ABCD为正方形时,
①求S关于x的函数解析式,并求S的最小值S0;
②在图②中画出①中函数的草图,并估计S=0.6时x的近似值(精确到0.01);
(2)如图③,当四边形ABCD为菱形,且∠A=30°时,四边形EFGH的面积是否存在最小值?若存在,求出最小值;若不存在,请说明理由.
查看习题详情和答案>>
(1)如图①,当四边形ABCD为正方形时,
①求S关于x的函数解析式,并求S的最小值S0;
②在图②中画出①中函数的草图,并估计S=0.6时x的近似值(精确到0.01);
(2)如图③,当四边形ABCD为菱形,且∠A=30°时,四边形EFGH的面积是否存在最小值?若存在,求出最小值;若不存在,请说明理由.
已知:在四边形ABCD中,AB=1,E、F、G、H分别时AB、BC、CD、DA上的点,且AE=BF=CG=DH.设四边形EFGH的面积为S,AE=x(0≤x≤1).
(1)如图①,当四边形ABCD为正方形时,
①求S关于x的函数解析式,并求S的最小值S;
②在图②中画出①中函数的草图,并估计S=0.6时x的近似值(精确到0.01);
(2)如图③,当四边形ABCD为菱形,且∠A=30°时,四边形EFGH的面积是否存在最小值?若存在,求出最小值;若不存在,请说明理由.

查看习题详情和答案>>
(1)如图①,当四边形ABCD为正方形时,
①求S关于x的函数解析式,并求S的最小值S;
②在图②中画出①中函数的草图,并估计S=0.6时x的近似值(精确到0.01);
(2)如图③,当四边形ABCD为菱形,且∠A=30°时,四边形EFGH的面积是否存在最小值?若存在,求出最小值;若不存在,请说明理由.
查看习题详情和答案>>