网址:http://m.1010jiajiao.com/timu3_id_454178[举报]
(本题满分12分)
如图所示,在平面直角坐标系中,顶点为(
,
)的抛物线交
轴于
点,交
轴于
,
两点(点
在点
的左侧),已知
点坐标为(
,
).
![]()
(1)求此抛物线的解析式;
(2)过点
作线段
的垂线交抛物线于点
,
如果以点
为圆心的圆与直线
相切,请判断抛物
线的对称轴
与⊙
有怎样的位置关系,并给出证明;
(3)已知点
是抛物线上的一个动点,且位于
,
两点之间,问:当点
运动到什么位置时,
的
面积最大?并求出此时
点的坐标和
的最大面积.
查看习题详情和答案>>
(本题满分12分)如图甲,分别以两个彼此相邻的正方形?OABC与CDEF的边OC、OA所在直线为x轴、y轴建立平面直角坐标系(O、C、F三点在x轴正半轴上).若⊙P过A、B、E三点(圆心在x轴上),抛物线y=14x2+bx+c经过A、C两点,与x轴的另一交点为G,M是FG的中点,正方形CDEF的面积为1.
1.(1)求B点坐标;
2.(2)求证:ME是⊙P的切线;
3.(3)设直线AC与抛物线对称轴交于N,Q点是此对称轴上不与N点重合的一动点,①求△ACQ周长的最小值;
②若FQ=t,S△ACQ=S,直接写出S与t之间的函数关系式.
查看习题详情和答案>>
(本题满分12分)如图,在平面直角坐标系中,直线l:
沿x轴翻折后,与x轴交于点A,与y轴交于点B,抛物线
与y轴交于点D,与直线AB交于点E、点F(点F在点E的右侧).
(1)求直线AB的解析式;
(2)若线段DF∥x轴,求抛物线的解析式;
(3)如图,在(2)的条件下,过F作FH⊥x轴于点G,与直线l交于点H,在抛物线上是否存在P、Q两点(点P在点Q的上方),PQ与AF交于点M,与FH交于点N,使得直线PQ既平分△AFH的周长,又平分△AFH面积,如果存在,求出P、Q的坐标,若不存在,请说明理由.
![]()
![]()
查看习题详情和答案>>