摘要:8.如图1.正方形ABCD和正方形BEFC. 操作:M是线段AB上一动点.从A点至B点移动.DM⊥MN.交对角线BF于点N. 探究:线段DM和MN之间的关系.并加以证明. 说明:如果你经历反复探索.没有找到解决问题的方法.请你把探索过程中的某种思路过程写出来在你经历说明(1)的过程之后.可以从下列①.②中选取一个补充或更换已知条件.完成你的证明.注意:选取①完成证明得9分,选取②完成证明得6分.①M是线段AB的中点,②M.N分别是线段AB.BF的中点. 附加题 如图2.当M是线段AE延长线上一动点.DM⊥MN.交对角线BF延长线于点N.探究线段DM和MN之间的关系.并加以证明. [课后作业] (19)矩形.菱形.正方形
网址:http://m.1010jiajiao.com/timu3_id_454033[举报]
(2007•中山区二模)(1)如图1,点B、M、C在同一直线上,以BM、BC为一边,在直线BC的两侧作等边△ABC和等边△BMN,直线AM、CN交于点O,则∠AOC=
(2)如图2,把△BMN绕点B逆时针旋转任意角度,∠AOC的度数是否变化,验证你的结论;
(3)如图3,正方形ABCD和正方形BMNE有公共顶点B,把正方形BMNE绕点B旋转任意角度,AM、CN交于点O,求∠AOC的度数.
查看习题详情和答案>>
60
60
度(直接写出答案);(2)如图2,把△BMN绕点B逆时针旋转任意角度,∠AOC的度数是否变化,验证你的结论;
(3)如图3,正方形ABCD和正方形BMNE有公共顶点B,把正方形BMNE绕点B旋转任意角度,AM、CN交于点O,求∠AOC的度数.
如图1,正方形ABCD和正三角形EFG的边长都为1,点E,F分别在线段AB,AD上滑动,设点G到CD的距离为x,到BC的距离为y,记∠HEF为α(当点E,F分别与B,A重合时,记α=0°).
(1)当α=0°时(如图2所示),求x,y的值(结果保留根号);
(2)当α为何值时,点G落在对角形AC上?请说出你的理由,并求出此时x,y的值(结果保留根号);
(3)请你补充完成下表(精确到0.01):
(4)若将“点E,F分别在线段AB,AD上滑动”改为“点E,F分别在正方形ABCD边上滑动”.当滑动一周时,请使用(3)的结果,在图4中描出部分点后,勾画出点G运动所形成的大致图形.
(参考数据:
≈1.732,sin15°=
≈0.259,sin75°=
≈0.966)

查看习题详情和答案>>
(1)当α=0°时(如图2所示),求x,y的值(结果保留根号);
(2)当α为何值时,点G落在对角形AC上?请说出你的理由,并求出此时x,y的值(结果保留根号);
(3)请你补充完成下表(精确到0.01):
| α | 0° | 15° | 30° | 45° | 60° | 75° | 90° |
| x | 0.03 | 0 | 0.29 | ||||
| y | 0.29 | 0.13 | 0.03 |
(参考数据:
| 3 |
| ||||
| 4 |
| ||||
| 4 |
如图1,正方形ABCD和正方形QMNP,M是正方形ABCD的对称中心,MN交AB于F,QM交AD于E.
(1)猜想:ME与MF的数量关系;
(2)如图2,若将原题中的“正方形”改为“菱形”,且∠M=∠B,其它条件不变,探索线段ME与线段MF的数量关系,并加以证明;
(3)如图3,若将原题中的“正方形”改为“矩形”,且AB:BC=1:2,其它条件不变,探索线段ME与线段MF的数量关系,并说明理由;
(4)如图4,若将原题中的“正方形”改为平行四边形,且∠M=∠B,AB:BC=m,其它条件不变,求出ME:MF的值.(直接写出答案)



查看习题详情和答案>>
(1)猜想:ME与MF的数量关系;
(2)如图2,若将原题中的“正方形”改为“菱形”,且∠M=∠B,其它条件不变,探索线段ME与线段MF的数量关系,并加以证明;
(3)如图3,若将原题中的“正方形”改为“矩形”,且AB:BC=1:2,其它条件不变,探索线段ME与线段MF的数量关系,并说明理由;
(4)如图4,若将原题中的“正方形”改为平行四边形,且∠M=∠B,AB:BC=m,其它条件不变,求出ME:MF的值.(直接写出答案)