摘要:1.如图.AB是⊙O的直径.点C在AB的延长线上.CD与⊙O相切.切点为D.如果∠A=35°.那么∠C等于 A.20° B.30° C.35° D.55°
网址:http://m.1010jiajiao.com/timu3_id_450979[举报]
如图,AB为的直径,点C在⊙O上,点P是直径AB上的一点(不与A,B重合),过点P作AB的垂线交BC的延长线于点Q。
(1)在线段PQ上取一点D,使DQ=DC,连接DC,试判断CD与⊙O的位置关系,并说明理由。
![]()
(2)若cosB=
,BP=6,AP=1,求QC的长。
如图,AB为的直径,点C在⊙O上,点P是直径AB上的一点(不与A,B重合),过点P作AB的垂线交BC的延长线于点Q。
![]()
(1)在线段PQ上取一点D,使DQ=DC,连接DC,试判断CD与⊙O的位置关系,并说明理由。
(2)若cosB=
,BP=6,AP=1,求QC的长。
查看习题详情和答案>>
如图,AB是⊙
的直径,P是AB上一点(与点A,B不重合),QP⊥AB,垂足为P点,直线QA交⊙
于C点,过点C作⊙
的切线交直线QP于点D.则△CDQ是等腰三角形.对上述命题证明如下:
![]()
证明:连接OC.
∵OA=OC,∴∠A=∠1.
∵CD切⊙
于C点,
∴∠OCD=90°,∴∠1+∠2=90°,∴∠A+∠2=90°.
在Rt△QPA中,∠QPA=90°,
∴∠A+∠Q=90°,∴∠2=∠Q,∴DQ=DC.
即△CDQ是等腰三角形.
问题:对上述命题,当点P在BA的延长线上时,其他条件不变.
如图所示,结论“△CDQ是等腰三角形”还成立吗?若成立,请给予证明;若不成立,请说明理由.
![]()