网址:http://m.1010jiajiao.com/timu3_id_450186[举报]
当
a>0时:①抛物线y=ax2+bx+c开口向________;②对称轴是直线________,顶点坐标为________;③在对称轴的左侧(即________),y随x的增大而________,在对称轴的右侧(即________),y随x的增大而________;④抛物线与对称轴的交点是抛物线的最低点,当x=________时,y最小=________.当
a<0时:①抛物线y=ax2+bx+c开口向________;②对称轴是直线________,顶点坐标为________;③在对称轴的左侧(即________),y随x的增大而________,在对称轴的右侧(即________),y随x的增大而________;④抛物线与对称轴的交点是抛物线的最高点,当x=________时,y最大=________.解:(1)A(-1,0),B(3,0),C(0,3).·················· 2分
抛物线的对称轴是:x=1.······················· 3分
(2)①设直线BC的函数关系式为:y=kx+b.
把B(3,0),C(0,3)分别代入得:
解得:k= -1,b=3.
所以直线BC的函数关系式为:
.
当x=1时,y= -1+3=2,∴E(1,2).
当
时,
,
∴P(m,
m+3).·························· 4分
在
中,当
时,
∴![]()
当
时,
∴
········· 5分
∴线段DE=4-2=2,线段
···· 6分
∵![]()
∴当
时,四边形
为平行四边形.
由
解得:
(不合题意,舍去).
因此,当
时,四边形
为平行四边形.··········· 7分
②设直线
与
轴交于点
,由
可得:![]()
∵
························ 8分
即
.
![]()
·········· 9分
(1)如图①.连接AC,将△OAC沿直线AC翻折,若点O的对应点0'恰好落在该抛物线的对称轴上,求实数a的值;
(2)如图②,在正方形EFGH中,点E、F的坐标分别是(4,4)、(4,3),边HG位于边EF的右侧.小林同学经过探索后发现了一个正确的命题:“若点P是边EH或边HG上的任意一点,则四条线段PA、PB、PC、PD不能与任何一个平行四边形的四条边对应相等(即这四条线段不能构成平行四边形).“若点P是边EF或边FG上的任意一点,刚才的结论是否也成立?请你积极探索,并写出探索过程;
(3)如图②,当点P在抛物线对称轴上时,设点P的纵坐标l是大于3的常数,试问:是否存在一个正数a,使得四条线段PA、PB、PC、PD与一个平行四边形的四条边对应相等(即这四条线段能构成平行四边形)?请说明理由. 查看习题详情和答案>>
巳知二次函数y=a(x2-6x+8)(a>0)的图象与x轴分别交于点A、B,与y轴交于点C.点D是抛物线的顶点.![]()
(1)如图①.连接AC,将△OAC沿直线AC翻折,若点O的对应点0'恰好落在该抛物线的对称轴上,求实数a的值;
(2)如图②,在正方形EFGH中,点E、F的坐标分别是(4,4)、(4,3),边HG位于边EF的右侧.小林同学经过探索后发现了一个正确的命题:“若点P是边EH或边HG上的任意一点,则四条线段PA、PB、PC、PD不能与任何一个平行四边形的四条边对应相等(即这四条线段不能构成平行四边形).“若点P是边EF或边FG上的任意一点,刚才的结论是否也成立?请你积极探索,并写出探索过程;
(3)如图②,当点P在抛物线对称轴上时,设点P的纵坐标l是大于3的常数,试问:是否存在一个正数a,使得四条线段PA、PB、PC、PD与一个平行四边形的四条边对应相等(即这四条线段能构成平行四边形)?请说明理由.