网址:http://m.1010jiajiao.com/timu3_id_449648[举报]
问题:已知方程
,求一个一元二次方程,使它的根分别是已知方程根的2倍。
解:设所求方程的根为y,则y=2x,所以![]()
把
代入已知方程,得![]()
化简,得:![]()
故所求方程为![]()
这种利用方程根的代换求新方程的方法,我们称为“换根法”。请阅读材料提供的“换根法”求新方程(要求:把所求方程化成一般形式)
(1)已知方程
,求一个一元二次方程,使它的根分别是已知方程根的相反数,则所求方程为:
;
(2)已知关于x的一元二次方程
有两个不等于零的实数根,求一个一元二方程,使它的根分别是已知方程的倒数。
问题:已知方程
,求一个一元二次方程,使它的根分别是已知方程根的2倍。
解:设所求方程的根为y,则y=2x,所以![]()
把
代入已知方程,得![]()
化简,得:![]()
故所求方程为![]()
这种利用方程根的代换求新方程的方法,我们称为“换根法”。请阅读材料提供的“换根法”求新方程(要求:把所求方程化成一般形式)
(1)已知方程
,求一个一元二次方程,使它的根分别是已知方程根的相反数,则所求方程为:
;
(2)已知关于x的一元二次方程
有两个不等于零的实数根,求一个一元二方程,使它的根分别是已知方程的倒数。
查看习题详情和答案>>
解:设所求方程的根为y,则y=2x,所以
把
化简,得:
故所求方程为
这种利用方程根的代换求新方程的方法,我们称为“换根法”。请阅读材料提供的“换根法”求新方程(要求:把所求方程化成一般形式)
(1)已知方程
;
(2)已知关于x的一元二次方程
解:设所求方程的
把
化简,得:
故所求方程为
这种利
(1)已知方程
(2)已知关于x的一
在前面的学习中,我们通过对同一面积的不同表达和比较,根据图①和图②发现并验证了平方差公式和完全平方公式
这种利用面积关系解决问题的方法,使抽象的数量关系因集合直观而形象化。
![]()
【研究速算】
提出问题:47×43,56×54,79×71,……是一些十位数字相同,且个位数字之和是10的两个两位数相乘的算式,是否可以找到一种速算方法?
几何建模:
用矩形的面积表示两个正数的乘积,以47×43为例:
(1)画长为47,宽为43的矩形,如图③,将这个47×43的矩形从右边切下长40,宽3的一条,拼接到原矩形的上面。
(2)分析:原矩形面积可以有两种不同的表达方式,47×43的矩形面积或(40+7+3)×40的矩形与右上角3×7的矩形面积之和,即47×43=(40+10)×40+3×7=5×4×100+3×7=2021,用文字表述47×43的速算方法是:十位数字4加1的和与4相乘,再乘以100,加上个位数字3与7的积,构成运算结果。
![]()
归纳提炼:
两个十位数字相同,并且个位数字之和是10的两位数相乘的速算方法是(用文字表述) .
【研究方程】
提出问题:怎么图解一元二次方程![]()
几何建模:
(1)变形:![]()
(2)画四个长为
,宽为
的矩形,构造图④
![]()
(3)分析:图中的大正方形面积可以有两种不同的表达方式,
或四个长
,宽
的矩形之和,加上中间边长为2的小正方形面积
即: ![]()
∵![]()
∴![]()
∴![]()
∵![]()
∴![]()
归纳提炼:求关于
的一元二次方程
的解
要求参照上述研究方法,画出示意图,并写出几何建模步骤(用钢笔或圆珠笔画图,并标注相关线段的长)
【研究不等关系】
提出问题:怎么运用矩形面积表示
与
的大小关系(其中
)?
几何建模:
(1)画长
,宽
的矩形,按图⑤方式分割
![]()
(2)变形:![]()
(3)分析:图⑤中大矩形的面积可以表示为
;阴影部分面积可以表示为
,
画点部分的面积可表示为
,由图形的部分与整体的关系可知:
>
,即
>![]()
归纳提炼:
当
,
时,表示
与
的大小关系
根据题意,设
,
,要求参照上述研究方法,画出示意图,并写出几何建模步骤(用钢笔或圆珠笔画图,并标注相关线段的长)
查看习题详情和答案>>