摘要:在中.若<0.则: A.不可能是钝角 B.不可能是钝角 C.不可能是钝角 D...都不可能是钝角
网址:http://m.1010jiajiao.com/timu3_id_449611[举报]
如图1至图5,⊙O均作无滑动滚动,⊙O1、⊙O2、⊙O3、⊙O4均表示⊙O与线段AB或BC相切于端点时刻的位置,⊙O的周长为c. 阅读理解:
![]()
(1)如图1,⊙O从⊙O1的位置出发,沿AB滚 动到⊙O2的位置,当AB = c时,⊙O恰好自转1周.
(2)如图2,∠ABC相邻的补角是n°,⊙O在∠ABC外部沿A-B-C滚动,在点B处,必须由⊙O1的位置旋转到⊙O2的位置,⊙O绕点B旋转的角∠O1BO2 = n°,⊙O在点B处自转
周.
实践应用:
(1)在阅读理解的(1)中,若AB = 2c,则⊙O自转 周;若AB = l,则⊙O自转 周.在阅读理解的(2)中,若∠ABC = 120°,则⊙O在点B处自转 周;若∠ABC = 60°,则⊙在点B处自转 周.
(2)如图3,∠ABC=90°,AB=BC=
c.⊙O从⊙O1的位置出发,在∠ABC外部沿A-B-C滚动到⊙O4的位置,⊙O自转 周.
拓展联想:
(1)如图4,△ABC的周长为l,⊙O从与AB相切于点D的位置出发,在△ABC外部,按顺时针方向沿三角形滚动,又回到与AB相切于点D的位置,⊙O自转了多少周?请说明理由.
![]()
(2)如图5,多边形的周长为l,⊙O从与某边相切于点D的位置出发,在多边形外部,按顺时针方向沿多边形滚动,又回到与该边相切于点D的位置,直接写出⊙O自转的周数.
查看习题详情和答案>>
如图①至图④,半径为1的⊙O均无滑动滚动,⊙O1、⊙O2、⊙O3、⊙O4均表示⊙O与线段AB或BC相切于端点时刻的位置.
【阅读理解】

(1)如图①,⊙O从⊙O1的位置出发,沿AB滚动到⊙O2的位置,当AB=2π时,圆心O经过的路径长为2π.
(2)如图②,∠ABC相邻的补角∠CBA=n°,⊙O在∠ABC外部沿A-B-C滚动,在点B处,必须由⊙O1的位置旋转到⊙O2的位置,⊙O绕B点旋转的角∠O1BO2=n°,此时,圆心O经过的路径弧O1O2的长为
.
【实践应用】
(1)在阅读理解(1)中,若AB=π时,则圆心O经过的路径长为
.
(2)如图③,∠ABC=90°,AB=BC=π.⊙O从⊙O1的位置出发,⊙O在∠ABC外部沿A-B-C滚动到⊙O4的位置,在这个过程中,圆心O经过的路径长为
.
【拓展联想】
(1)如图④,△ABC的周长为4π,⊙O从与AB相切于点D的位置出发,在△AABC外部,按顺时针方向沿三角形滚动,又回到与AB相切于点D的位置,在这个过程中,圆心O经过的路径长为
(2)如图⑤,多边形的周长为l,⊙O从与某边相切于点D的位置出发,在多边形外部,按顺时针方向沿多边形滚动,又回到与该边相切于点D的位置,在这个过程中,圆心O经过的路径长为

查看习题详情和答案>>
【阅读理解】
(1)如图①,⊙O从⊙O1的位置出发,沿AB滚动到⊙O2的位置,当AB=2π时,圆心O经过的路径长为2π.
(2)如图②,∠ABC相邻的补角∠CBA=n°,⊙O在∠ABC外部沿A-B-C滚动,在点B处,必须由⊙O1的位置旋转到⊙O2的位置,⊙O绕B点旋转的角∠O1BO2=n°,此时,圆心O经过的路径弧O1O2的长为
| nπ |
| 180 |
【实践应用】
(1)在阅读理解(1)中,若AB=π时,则圆心O经过的路径长为
π
π
;在阅读理解(2)中,若∠ABC=120°时,则圆心O经过的路径弧O1O2的长为| π |
| 3 |
| π |
| 3 |
(2)如图③,∠ABC=90°,AB=BC=π.⊙O从⊙O1的位置出发,⊙O在∠ABC外部沿A-B-C滚动到⊙O4的位置,在这个过程中,圆心O经过的路径长为
| 5π |
| 2 |
| 5π |
| 2 |
【拓展联想】
(1)如图④,△ABC的周长为4π,⊙O从与AB相切于点D的位置出发,在△AABC外部,按顺时针方向沿三角形滚动,又回到与AB相切于点D的位置,在这个过程中,圆心O经过的路径长为
6π
6π
.(2)如图⑤,多边形的周长为l,⊙O从与某边相切于点D的位置出发,在多边形外部,按顺时针方向沿多边形滚动,又回到与该边相切于点D的位置,在这个过程中,圆心O经过的路径长为
l+2π
l+2π
.