摘要:23. 如图16.在平面直角坐标系中.矩形ABCO的面积为15.边OA比OC大2.E为BC的中点.以OE为直径的⊙O′交轴于D点.过点D作DF⊥AE于点F. (1) 求OA.OC的长, (2) 求证:DF为⊙O′的切线, (3) 小明在解答本题时.发现△AOE是等腰三角形.由此.他断定:“直线BC上一定存在除点E以外的点P.使△AOP也是等腰三角形.且点P一定在⊙O′外 .你同意他的看法吗?请充分说明理由. 解:
网址:http://m.1010jiajiao.com/timu3_id_448123[举报]
如图16,在平面直角坐标系中,直线
与
轴交于点
,与
轴交于点
,抛物线
经过
三点.
(1)求过
三点抛物线的解析式并求出顶点
的坐标;
(2)在抛物线上是否存在点
,使
为直角三角形,若存在,直接写出
点坐标;若不存在,请说明理由;
(3)试探究在直线
上是否存在一点
,使得
的周长最小,若存在,求出
点的坐标;若不存在,请说明理由.
![]()
(1)求抛物线的函数表达式;
(2)如图2,若正方形ABCD在平面内运动,并且边BC所在的直线始终与x轴垂直,抛物线始终与边AB交于点P且同时与边CD交于点Q(运动时,点P不与A,B两点重合,点Q不与C,D两点重合).设点A的坐标为(m,n)(m>0).
①当PO=PF时,分别求出点P和点Q的坐标;
②在①的基础上,当正方形ABCD左右平移时,请直接写出m的取值范围;
③当n=7时,是否存在m的值使点P为AB边的中点?若存在,请求出m的值;若不存在,请说明理由. 查看习题详情和答案>>
如图1,在平面直角坐标系中,点A(4,4),点B、C分别在x轴、y轴的正半轴上,S四边形OBAC=16.
(1)∠COA的值为
(2)求∠CAB的度数;
(3)如图2,点M、N分别是x轴正半轴及射线OA上一点,且OH⊥MN的延长线于H,满足∠HON=∠NMO,请探究两条线段MN、OH之间的数量关系,并给出证明.
查看习题详情和答案>>
(1)∠COA的值为
45°
45°
;(2)求∠CAB的度数;
(3)如图2,点M、N分别是x轴正半轴及射线OA上一点,且OH⊥MN的延长线于H,满足∠HON=∠NMO,请探究两条线段MN、OH之间的数量关系,并给出证明.
如图1,在平面直角坐标系中,抛物线y=ax2+c与x轴正半轴交于点F(16,0),与y轴正半轴交于点E(0,16),边长为16的正方形ABCD的顶点D与原点O重合,顶点A与点E重合,顶点C与点F重合.
(1)求抛物线的函数表达式;
(2)如图2,若正方形ABCD在平面内运动,并且边BC所在的直线始终与x轴垂直,抛物线始终与边AB交于点P且同时与边CD交于点Q(运动时,点P不与A,B两点重合,点Q不与C,D两点重合).设点A的坐标为(m,n)(m>0).
①当PO=PF时,分别求出点P和点Q的坐标;
②在①的基础上,当正方形ABCD左右平移时,请直接写出m的取值范围;
③当n=7时,是否存在m的值使点P为AB边的中点?若存在,请求出m的值;若不存在,请说明理由.
查看习题详情和答案>>
(1)求抛物线的函数表达式;
(2)如图2,若正方形ABCD在平面内运动,并且边BC所在的直线始终与x轴垂直,抛物线始终与边AB交于点P且同时与边CD交于点Q(运动时,点P不与A,B两点重合,点Q不与C,D两点重合).设点A的坐标为(m,n)(m>0).
①当PO=PF时,分别求出点P和点Q的坐标;
②在①的基础上,当正方形ABCD左右平移时,请直接写出m的取值范围;
③当n=7时,是否存在m的值使点P为AB边的中点?若存在,请求出m的值;若不存在,请说明理由.
如图1,在平面直角坐标系中,拋物线y=ax2+c与x轴正半轴交于点F(16,0)、与y轴正半轴交于点E(0,16),边长为16的正方形ABCD的顶点D与原点O重合,顶点A与点E重合,顶点C与点F重合;
1.求拋物线的函数表达式
2.如图2,若正方形ABCD在平面内运动,并且边BC所在的直线始终与x轴垂直,抛物线始终与边AB交于点P且同时与边CD交于点Q(运动时,点P不与A、B两点重合,点Q不与C、D两点重合)。设点A的坐标为(m,n) (m>0)。
j 当PO=PF时,分别求出点P和点Q的坐标;
k 在j的基础上,当正方形ABCD左右平移时,请直接写出m的取值范围;
l 当n=7时,是否存在m的值使点P为AB边中点。若存在,请求出m的值;若不存在,请说明理由。
![]()
查看习题详情和答案>>