摘要:19.解法在△ABC中 .即. 由直三棱柱性质知:平面ACC1A1⊥平面ABC. ∴BC⊥平面ACC1A1 ∴BC⊥A1C 又BC∥B1C1 ∴B1C1⊥A1C ------------------------ 4分 (2)∵BC∥B1C1.平面ABC. ∴B1C1∥平面A1CB ∴B1点到平面A1CB的距离等于点C1到平面A1CB的距离.--------6分 设点B1点到平面A1CB的距离为.则 ---------8分 (3)连结AC1.交A1C于O.过O作OD⊥A1B于D.连结C1D 由(1)BC⊥平面ACC1A1得:平面BCA1⊥平面ACC1A1 由正方形ACC1A1知AC1⊥A1C ∴C1A⊥平面A1BC ∴OD是C1D在平面A1BC上的射影 ∴C1D⊥A1B ∴∠ODC1是二面角C1-A1B-C的平面角.--------------10分 在△A1BC中.A1B=.BC=.A1C=.A1O=. 由得: ∴二面角C1-A1B-C的大小是--------------12分 解法(二)先证.然后以C为原点.分别以CA.CB.CC1为轴.轴.轴建立空间直角坐标系(略)

网址:http://m.1010jiajiao.com/timu3_id_4472868[举报]

鸡兔同笼

  你以前听说过“鸡兔同笼”问题吗?这个问题,是我国古代著名趣题之一.大约在1 500年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?

  你会解答这个问题吗?你想知道《孙子算经》中是如何解答这个问题的吗?

  解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独角鸡”,每只兔就变成了“双脚兔”.这样,(1)鸡和兔的脚的总数就由94只变成了47只;(2)如果笼子里有一只兔子,则脚的总数就比头的总数多1.因此,脚的总只数47与总头数35的差,就是兔子的只数,即47-35=12(只).显然,鸡的只数就是35-12=23(只)了.

  这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已.这种思维方法叫化归法.

  化归法就是在解决问题时,先不对问题采取直接的分析,而是将题中的条件或问题进行变形,使之转化,直到最终把它归成某个已经解决的问题.

1.古代《孙子算经》就有这么好的解法——化归法,这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已.对此,谈谈你的看法.

2.我国古代数学研究一直处于领先地位,现在有所落后了,对此,我们不应只感叹古人的伟大,而更应该树立为科学而奋斗终身的信心,同学们,你们准备好了吗?

查看习题详情和答案>>

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网