摘要:已知函数在点处有极小值-1试确定的值.并求出的单调递减区间.
网址:http://m.1010jiajiao.com/timu3_id_4472395[举报]
已知函数f(x)=
x3+ax2+bx,且f′(-1)=0.
(1)试用含a的代数式表示b,并求f(x)的单调区间;
(2)令a=-1,设函数f(x)在x1,x2(x1<x2)处取得极值,记点M (x1,f(x1)),N(x2,f(x2)),P(m,f(m)),x1<m<x2,请仔细观察曲线f(x)在点P处的切线与线段MP的位置变化趋势,并解释以下问题:
(Ⅰ)若对任意的t∈(x1,x2),线段MP与曲线f(x)均有异于M,P的公共点,试确定t的最小值,并证明你的结论;
(Ⅱ)若存在点Q(n,f(n)),x≤n<m,使得线段PQ与曲线f(x)有异于P、Q的公共点,请直接写出m的取值范围(不必给出求解过程). 查看习题详情和答案>>
1 | 3 |
(1)试用含a的代数式表示b,并求f(x)的单调区间;
(2)令a=-1,设函数f(x)在x1,x2(x1<x2)处取得极值,记点M (x1,f(x1)),N(x2,f(x2)),P(m,f(m)),x1<m<x2,请仔细观察曲线f(x)在点P处的切线与线段MP的位置变化趋势,并解释以下问题:
(Ⅰ)若对任意的t∈(x1,x2),线段MP与曲线f(x)均有异于M,P的公共点,试确定t的最小值,并证明你的结论;
(Ⅱ)若存在点Q(n,f(n)),x≤n<m,使得线段PQ与曲线f(x)有异于P、Q的公共点,请直接写出m的取值范围(不必给出求解过程). 查看习题详情和答案>>
已知函数f(x)=
x3-x2+ax(a为常数)
(1)若f(x)在区间[-1,2]上单调递减,求a的取值范围;
(2)若f(x)与直线y=-9相切:
(ⅰ)求a的值;
(ⅱ)设f(x)在x1,x2(x1<x2)处取得极值,记点M (x1,f(x1)),N(x2,f(x2)),P(m,f(m)),x1<m<x2,若对任意的m∈(t,x2),线段MP与曲线f(x)均有异于M,P的公共点,试确定t的最小值,并证明你的结论.
查看习题详情和答案>>
1 | 3 |
(1)若f(x)在区间[-1,2]上单调递减,求a的取值范围;
(2)若f(x)与直线y=-9相切:
(ⅰ)求a的值;
(ⅱ)设f(x)在x1,x2(x1<x2)处取得极值,记点M (x1,f(x1)),N(x2,f(x2)),P(m,f(m)),x1<m<x2,若对任意的m∈(t,x2),线段MP与曲线f(x)均有异于M,P的公共点,试确定t的最小值,并证明你的结论.