摘要:22.设函数f(x)的定义域为R.对于任意实数x.y.总有f.且当x>0时.0<f(x)<1. 证明:当x<0时.f(x)>1, 在R上单调递减,·f}.N={y|f(ax2+x+1-y)=1.x∈R}.且M∩N≠φ.求a的取值范围.
网址:http://m.1010jiajiao.com/timu3_id_4470133[举报]
设函数f(x)的定义域为R,对于任意实数x,y,总有f(x+y)=f(x)f(y),且当x>0时,0<f(x)<1.
(Ⅰ)求f(0)的值;
(Ⅱ)确定f(x)的单调区间;
(Ⅲ)若M={y|f(y)·f(1-a)≥f(1)},N={y|f(ax2+x+1-y)=1,x∈R},且M∩N≠,求a的取值范围.·
查看习题详情和答案>>设函数f(x)的定义域为R,对于任意的实数x、y都有f(x+y)=f(x)+f(y),又当x>0时,f(x)<0,且f(2)=-1.
(1)求证:f(x)为奇函数;
(2)试问函数f(x)在区间[-6,6]上是否存在最大值与最小值?若存在,求出最大值、最小值;若不存在,请说明理由.
设函数f(x)的定义域为R,对于任意实数x,y,总有f(x+y)=f(x)f(y),且当x>0时,0<f(x)<1.
(Ⅰ)求f(0)的值;
(Ⅱ)确定f(x)的单调区间;
(Ⅲ)若M={y|f(y)·f(1-a)≥f(1)},N={y|f(ax2+x+1-y)=1,x∈R},且M∩N≠,求a的取值范围.