摘要:(1).复数等于 A. B. C. D. (2).设集合..则等于 A. B. C. D. (3).若抛物线的焦点与椭圆的右焦点重合.则的值为 A. B. C. D. (4).设.已知命题,命题.则是成立的 A.必要不充分条件 B.充分不必要条件 C.充分必要条件 D.既不充分也不必要条件 (5).函数 的反函数是 , . A. B. . . . C. D. . . (6).将函数的图象按向量平移.平移后的图象如图所示.则平移后的图象所对应函数的解析式是 A. B. C. D. (7).若曲线的一条切线与直线垂直.则的方程为 A. B. C. D. (8).设.对于函数.下列结论正确的是 A.有最大值而无最小值 B.有最小值而无最大值 C.有最大值且有最小值 D.既无最大值又无最小值 (9).表面积为 的正八面体的各个顶点都在同一个球面上.则此球的体积为 A. B. C. D. . (10).如果实数满足条件 . 那么的最大值为 . A. B. C. D. (11).如果的三个内角的余弦值分别等于的三个内角的正弦值.则 A.和都是锐角三角形 B.和都是钝角三角形 C.是钝角三角形.是锐角三角形 D.是锐角三角形.是钝角三角形 (12).在正方体上任选3个顶点连成三角形.则所得的三角形是直角非等腰三角形的概率为 A. B. C. D. 高等学校招生全国统一考试 理科数学 第Ⅱ卷 请用0.5毫米黑色墨水签字笔在答题卡上书写作答.在试题卷上书写作答无效.
网址:http://m.1010jiajiao.com/timu3_id_4468809[举报]
在中学阶段,对许多特定集合(如实数集、复数集以及平面向量集等)的学习常常是以定义运算(如四则运算)和研究运算律为主要内容.现设集合A由全体二元有序实数组组成,在A上定义一个运算,记为⊙,对于A中的任意两个元素α=(a,b),β=(c,d),规定:α⊙β=(ad+bc,bd-ac).
(1)计算:(2,3)⊙(-1,4);
(2)请用数学符号语言表述运算⊙满足交换律,并给出证明;
(3)若“A中的元素I=(x,y)”是“对,都有α⊙I=I⊙α=α成立”的充要条件,试求出元素I.
在中学阶段,对许多特定集合(如实数集、复数集以及平面向量集等)的学习常常是以定义运算(如四则运算)和研究运算律为主要内容.现设集合A由全体二元有序实数组组成,在A上定义一个运算,记为⊙,对于A中的任意两个元素α=(a,b),β=(c,d),规定:α⊙β.
(Ⅰ)计算:(2,3)⊙(-1,4);
(Ⅱ)请用数学符号语言表述运算⊙满足交换律和结合律,并任选其一证明;
(Ⅲ)A中是否存在唯一确定的元素I满足:对于任意α∈A,都有α⊙I=I⊙α=α成立,若存在,请求出元素I;若不存在,请说明理由;
(Ⅳ)试延续对集合A的研究,请在A上拓展性地提出一个真命题,并说明命题为真的理由.
在中学阶段,对许多特定集合(如实数集、复数集以及平面向量集等)的学习常常是以定义运算(如四则运算)和研究运算律为主要内容.现设集合A由全体二元有序实数组组成,在A上定义一个运算,记为⊙,对于A中的任意两个元素α=(a,b),β=(c,d),规定:α⊙β=(ad+bc,bd-ac).
(1)计算:(2,3)⊙(-1,4).
(2)请用数学符号语言表述运算⊙满足交换律,并给出证明.
(3)若“A中的元素I=(x,y)”是“对?α∈A,都有α⊙I=I⊙α=α成立”的充要条件,试求出元素I. 查看习题详情和答案>>
(1)计算:(2,3)⊙(-1,4).
(2)请用数学符号语言表述运算⊙满足交换律,并给出证明.
(3)若“A中的元素I=(x,y)”是“对?α∈A,都有α⊙I=I⊙α=α成立”的充要条件,试求出元素I. 查看习题详情和答案>>
在中学阶段,对许多特定集合(如实数集、复数集以及平面向量集等)的学习常常是以定义运算(如四则运算)和研究运算律为主要内容.现设集合A由全体二元有序实数组组成,在A上定义一个运算,记为⊙,对于A中的任意两个元素α=(a,b),β=(c,d),规定:α⊙β=(
,
).
(1)计算:(2,3)⊙(-1,4);
(2)请用数学符号语言表述运算⊙满足交换律和结合律,并任选其一证明;
(3)A中是否存在唯一确定的元素I满足:对于任意α∈A,都有α⊙I=I⊙α=α成立,若存在,请求出元素I;若不存在,请说明理由;
(4)试延续对集合A的研究,请在A上拓展性地提出一个真命题,并说明命题为真的理由. 查看习题详情和答案>>
|
|
(1)计算:(2,3)⊙(-1,4);
(2)请用数学符号语言表述运算⊙满足交换律和结合律,并任选其一证明;
(3)A中是否存在唯一确定的元素I满足:对于任意α∈A,都有α⊙I=I⊙α=α成立,若存在,请求出元素I;若不存在,请说明理由;
(4)试延续对集合A的研究,请在A上拓展性地提出一个真命题,并说明命题为真的理由. 查看习题详情和答案>>
在中学阶段,对许多特定集合(如实数集、复数集以及平面向量集等)的学习常常是以定义运算(如四则运算)和研究运算律为主要内容.现设集合A由全体二元有序实数组组成,在A上定义一个运算,记为⊙,对于A中的任意两个元素α=(a,b),β=(c,d),规定:α⊙β=(
,
).
(1)计算:(2,3)⊙(-1,4);
(2)请用数学符号语言表述运算⊙满足交换律和结合律,并任选其一证明;
(3)A中是否存在唯一确定的元素I满足:对于任意α∈A,都有α⊙I=I⊙α=α成立,若存在,请求出元素I;若不存在,请说明理由;
(4)试延续对集合A的研究,请在A上拓展性地提出一个真命题,并说明命题为真的理由.
查看习题详情和答案>>
|
|
(1)计算:(2,3)⊙(-1,4);
(2)请用数学符号语言表述运算⊙满足交换律和结合律,并任选其一证明;
(3)A中是否存在唯一确定的元素I满足:对于任意α∈A,都有α⊙I=I⊙α=α成立,若存在,请求出元素I;若不存在,请说明理由;
(4)试延续对集合A的研究,请在A上拓展性地提出一个真命题,并说明命题为真的理由.