网址:http://m.1010jiajiao.com/timu3_id_4465271[举报]
如图,在四棱锥中,⊥底面,底面为正方形,,,分别是,的中点.
(I)求证:平面;
(II)求证:;
(III)设PD=AD=a, 求三棱锥B-EFC的体积.
【解析】第一问利用线面平行的判定定理,,得到
第二问中,利用,所以
又因为,,从而得
第三问中,借助于等体积法来求解三棱锥B-EFC的体积.
(Ⅰ)证明: 分别是的中点,
,. …4分
(Ⅱ)证明:四边形为正方形,.
, .
, ,
.,. ………8分
(Ⅲ)解:连接AC,DB相交于O,连接OF, 则OF⊥面ABCD,
∴
如图,在四棱锥中,底面,底面是平行四边形,, 是 的中点。(1)求证:; (2)求证:;(3)若,求二面角 的余弦值.
如图,在四棱锥中,底面,底面是平行四边形,, 是 的中点。
(1)求证:;
(2)求证:;
(3)若,求二面角 的余弦值.
如图,在四棱锥中,底面ABCD是正方形,侧棱底面ABCD,,E是PC的中点,作交PB于点F.
(1)证明 平面;
(2)证明平面EFD;
(3)求二面角的大小.
【解析】本试题主要考查了立体几何中线面平行的判定,线面垂直的判定,以及二面角的求解的综合运用试题。体现了运用向量求解立体几何的代数手法的好处。