摘要:20.如图.设定直线L1:x=-,定点F(.0).其中>0.动直线L2垂直L1与点P.线 段PF的垂直平分线交L2与点M. (1)求点M的轨迹C的方程. (2)设点M的轨迹C与x轴交于点Q.在C上是否一定存在另外两点R.S.使得ΔQRS 为等边三角形?若存在.请用表示这个等边三角形的面积,若不存在.请说明理由. 解: 高三第二学期导师制(04)解答
网址:http://m.1010jiajiao.com/timu3_id_4463247[举报]
如图,在平面直角坐标系xoy中,设点F(0,p)(p>0),直线l:y=-p,点p在直线l上移动,R是线段PF与x轴的交点,过R、P分别作直线l1、l2,使l1⊥PF,l2⊥l l1∩l2=Q.
(Ⅰ)求动点Q的轨迹C的方程;
(Ⅱ)在直线l上任取一点M做曲线C的两条切线,设切点为A、B,求证:直线AB恒过一定点;
(Ⅲ)对(Ⅱ)求证:当直线MA,MF,MB的斜率存在时,直线MA,MF,MB的斜率的倒数成等差数列.
查看习题详情和答案>>
如图,在平面直角坐标系xoy中,设点F(0,p)(p>0),直线l:y=-p,点P在直线l上移动,R是线段PF与x轴的交点, 过R、P分别作直线l1、l2,使l1⊥PF,l2⊥l .
(Ⅰ)求动点Q的轨迹C的方程;
(Ⅱ)在直线l上任取一点M做曲线C的两条切线,设切点为A、B,求证:直线AB恒过一定点;
(Ⅲ)对(Ⅱ)求证:当直线MA,MF,MB的斜率存在时,直线MA,MF,MB的斜率的倒数成等差数列.
如图,在平面直角坐标系xoy中,设点F(0,p)(p>0),直线l:y=-p,点p在直线l上移动,R是线段PF与x轴的交点,过R、P分别作直线l1、l2,使l1⊥PF,l2⊥l l1∩l2=Q.
(Ⅰ)求动点Q的轨迹C的方程;
(Ⅱ)在直线l上任取一点M做曲线C的两条切线,设切点为A、B,求证:直线AB恒过一定点;
(Ⅲ)对(Ⅱ)求证:当直线MA,MF,MB的斜率存在时,直线MA,MF,MB的斜率的倒数成等差数列.
查看习题详情和答案>>
(Ⅰ)求动点Q的轨迹C的方程;
(Ⅱ)在直线l上任取一点M做曲线C的两条切线,设切点为A、B,求证:直线AB恒过一定点;
(Ⅲ)对(Ⅱ)求证:当直线MA,MF,MB的斜率存在时,直线MA,MF,MB的斜率的倒数成等差数列.
查看习题详情和答案>>