摘要:解:(Ⅰ)设椭圆E的方程为(a>b>0).由e= ∴a2=3b2 故椭圆方程x2+3y2=3b2 1分 设A(x1,y1).B(x2,y2),由于点C分有向线段的比为2. ∴ ① ② 即 3分 由消去y整理并化简得 (3k2+1)x2+6k2x+3k2-3b2=0 由直线l与椭圆E相交于A(x1,y1),B(x2,y2)?两点? ③ ④ ⑤ 5分 而S△OAB ⑥ 由①④得:x2+1=-.代入⑥得:S△OAB= 8分 (Ⅱ)因S△OAB=,当且仅当S△OAB取得最大值 10分 此时x1+x2=-1,又∵=-1 ∴x1=1,x2=-2 将x1,x2及k2=代入⑤得3b2=5 ∴椭圆方程x2+3y2=5 14分
网址:http://m.1010jiajiao.com/timu3_id_4462807[举报]
在A、B、C、D四小题中只能选做2题,每小题10分,共计20分.解答应写出文字说明、证明过程或演算步骤.
A.选修4-1:几何证明选讲
如图,CP是圆O的切线,P为切点,直线CO交圆O于A,B两点,AD⊥CP,垂足为D.
求证:∠DAP=∠BAP.
B.选修4-2:矩阵与变换
设a>0,b>0,若矩阵A=
把圆C:x2+y2=1变换为椭圆E:
+
=1.
(1)求a,b的值;(2)求矩阵A的逆矩阵A-1
C.选修4-4:坐标系与参数方程在极坐标系中,已知圆C:ρ=4cosθ被直线l:ρsin(θ-\frac{π}{6})=a截得的弦长为2
求实数a的值.
D.选修4-5:不等式选讲已知a,b是正数,求证:a2+4b2+
≥4.
查看习题详情和答案>>
A.选修4-1:几何证明选讲
如图,CP是圆O的切线,P为切点,直线CO交圆O于A,B两点,AD⊥CP,垂足为D.
求证:∠DAP=∠BAP.
B.选修4-2:矩阵与变换
设a>0,b>0,若矩阵A=
|
x2 |
4 |
y2 |
3 |
(1)求a,b的值;(2)求矩阵A的逆矩阵A-1
C.选修4-4:坐标系与参数方程在极坐标系中,已知圆C:ρ=4cosθ被直线l:ρsin(θ-\frac{π}{6})=a截得的弦长为2
3 |
D.选修4-5:不等式选讲已知a,b是正数,求证:a2+4b2+
1 |
ab |
在A、B、C、D四小题中只能选做2题,每小题10分,共计20分.解答应写出文字说明、证明过程或演算步骤.
A.选修4-1:几何证明选讲
如图,CP是圆O的切线,P为切点,直线CO交圆O于A,B两点,AD⊥CP,垂足为D.
求证:∠DAP=∠BAP.
B.选修4-2:矩阵与变换
设a>0,b>0,若矩阵A=把圆C:x2+y2=1变换为椭圆E:=1.
(1)求a,b的值;(2)求矩阵A的逆矩阵A-1
C.选修4-4:坐标系与参数方程在极坐标系中,已知圆C:ρ=4cosθ被直线l:ρsin(θ-\frac{π}{6})=a截得的弦长为2求实数a的值.
D.选修4-5:不等式选讲已知a,b是正数,求证:a2+4b2≥4.
查看习题详情和答案>>
A.选修4-1:几何证明选讲
如图,CP是圆O的切线,P为切点,直线CO交圆O于A,B两点,AD⊥CP,垂足为D.
求证:∠DAP=∠BAP.
B.选修4-2:矩阵与变换
设a>0,b>0,若矩阵A=把圆C:x2+y2=1变换为椭圆E:=1.
(1)求a,b的值;(2)求矩阵A的逆矩阵A-1
C.选修4-4:坐标系与参数方程在极坐标系中,已知圆C:ρ=4cosθ被直线l:ρsin(θ-\frac{π}{6})=a截得的弦长为2求实数a的值.
D.选修4-5:不等式选讲已知a,b是正数,求证:a2+4b2≥4.
查看习题详情和答案>>
在A、B、C、D四小题中只能选做2题,每小题10分,共计20分.解答应写出文字说明、证明过程或演算步骤.
A.选修4-1:几何证明选讲
如图,CP是圆O的切线,P为切点,直线CO交圆O于A,B两点,AD⊥CP,垂足为D.
求证:∠DAP=∠BAP.
B.选修4-2:矩阵与变换
设a>0,b>0,若矩阵A=把圆C:x2+y2=1变换为椭圆E:=1.
(1)求a,b的值;(2)求矩阵A的逆矩阵A-1
C.选修4-4:坐标系与参数方程在极坐标系中,已知圆C:ρ=4cosθ被直线l:ρsin(θ-\frac{π}{6})=a截得的弦长为2求实数a的值.
D.选修4-5:不等式选讲已知a,b是正数,求证:a2+4b2≥4.
查看习题详情和答案>>
A.选修4-1:几何证明选讲
如图,CP是圆O的切线,P为切点,直线CO交圆O于A,B两点,AD⊥CP,垂足为D.
求证:∠DAP=∠BAP.
B.选修4-2:矩阵与变换
设a>0,b>0,若矩阵A=把圆C:x2+y2=1变换为椭圆E:=1.
(1)求a,b的值;(2)求矩阵A的逆矩阵A-1
C.选修4-4:坐标系与参数方程在极坐标系中,已知圆C:ρ=4cosθ被直线l:ρsin(θ-\frac{π}{6})=a截得的弦长为2求实数a的值.
D.选修4-5:不等式选讲已知a,b是正数,求证:a2+4b2≥4.
查看习题详情和答案>>
在A、B、C、D四小题中只能选做2题,每小题10分,共计20分.解答应写出文字说明、证明过程或演算步骤.
A.选修4-1:几何证明选讲
如图,CP是圆O的切线,P为切点,直线CO交圆O于A,B两点,AD⊥CP,垂足为D.
求证:∠DAP=∠BAP.
B.选修4-2:矩阵与变换
设a>0,b>0,若矩阵A=把圆C:x2+y2=1变换为椭圆E:=1.
(1)求a,b的值;(2)求矩阵A的逆矩阵A-1
C.选修4-4:坐标系与参数方程在极坐标系中,已知圆C:ρ=4cosθ被直线l:ρsin(θ-\frac{π}{6})=a截得的弦长为2求实数a的值.
D.选修4-5:不等式选讲已知a,b是正数,求证:a2+4b2≥4.
查看习题详情和答案>>
A.选修4-1:几何证明选讲
如图,CP是圆O的切线,P为切点,直线CO交圆O于A,B两点,AD⊥CP,垂足为D.
求证:∠DAP=∠BAP.
B.选修4-2:矩阵与变换
设a>0,b>0,若矩阵A=把圆C:x2+y2=1变换为椭圆E:=1.
(1)求a,b的值;(2)求矩阵A的逆矩阵A-1
C.选修4-4:坐标系与参数方程在极坐标系中,已知圆C:ρ=4cosθ被直线l:ρsin(θ-\frac{π}{6})=a截得的弦长为2求实数a的值.
D.选修4-5:不等式选讲已知a,b是正数,求证:a2+4b2≥4.
查看习题详情和答案>>
(1)若椭圆的方程是:
+
=1(a>b>0),它的左、右焦点依次为F1、F2,P是椭圆上异于长轴端点的任意一点.在此条件下我们可以提出这样一个问题:“设△PF1F2的过P角的外角平分线为l,自焦点F2引l的垂线,垂足为Q,试求Q点的轨迹方程?”
对该问题某同学给出了一个正确的求解,但部分解答过程因作业本受潮模糊了,我们在
这些模糊地方划了线,请你将它补充完整.
解:延长F2Q 交F1P的延长线于E,据题意,
E与F2关于l对称,所以|PE|=|PF2|.
所以|EF1|=|PF1|+|PE|=|PF1|+|PF2|= ,
在△EF1F2中,显然OQ是平行于EF1的中位线,
所以|OQ|=
|EF1|= ,
注意到P是椭圆上异于长轴端点的点,所以Q点的轨迹是 ,
其方程是: .
(2)如图2,双曲线的方程是:
-
=1(a,b>0),它的左、右焦点依次为F1、F2,P是双曲线上异于实轴端点的任意一点.请你试着提出与(1)类似的问题,并加以证明.
查看习题详情和答案>>
x2 |
a2 |
y2 |
b2 |
对该问题某同学给出了一个正确的求解,但部分解答过程因作业本受潮模糊了,我们在
这些模糊地方划了线,请你将它补充完整.
解:延长F2Q 交F1P的延长线于E,据题意,
E与F2关于l对称,所以|PE|=|PF2|.
所以|EF1|=|PF1|+|PE|=|PF1|+|PF2|=
在△EF1F2中,显然OQ是平行于EF1的中位线,
所以|OQ|=
1 |
2 |
注意到P是椭圆上异于长轴端点的点,所以Q点的轨迹是
其方程是:
(2)如图2,双曲线的方程是:
x2 |
a2 |
y2 |
b2 |