摘要:解:(Ⅰ)设P(x0,y0)是y=f(x)图象上点.Q(x,y),则. ∴ ∴-y=loga(x+2a-3a).∴y=loga (x>a) 5分 (Ⅱ) ∴x>3a ∵f(x)与g(x)在[a+2,a+3]上有意义. ∴3a<a+2 ∴0<a<1 6分 ∵|f(x)-g(x)|≤1恒成立|loga(x-3a)(x-a)|≤1恒成立. 8分 对x∈[a+2,a+3]上恒成立.令h(x)=(x-2a)2-a2 其对称轴x=2a,2a<2,2<a+2 ∴当x∈[a+2,a+3] hmin(x)=h(a+2).hmax=h(a+3) ∴原问题等价 10分 12分
网址:http://m.1010jiajiao.com/timu3_id_4462806[举报]
设函数y=f(x)=ax+
(a≠0)的图象过点(0,-1)且与直线y=-1有且只有一个公共点;设点P(x0,y0)是函数y=f(x)图象上任意一点,过点P分别作直线y=x和直线x=1的垂线,垂足分别是M,N.
(1)求y=f(x)的解析式;
(2)证明:曲线y=f(x)的图象是一个中心对称图形,并求其对称中心Q;
(3)证明:线段PM,PN长度的乘积PM•PN为定值;并用点P横坐标x0表示四边形QMPN的面积.. 查看习题详情和答案>>
1 | x+b |
(1)求y=f(x)的解析式;
(2)证明:曲线y=f(x)的图象是一个中心对称图形,并求其对称中心Q;
(3)证明:线段PM,PN长度的乘积PM•PN为定值;并用点P横坐标x0表示四边形QMPN的面积.. 查看习题详情和答案>>