摘要:10.已知奇数f满足:f=ax-a-x+2且g的值为( ) A.a2 B.2 C.17/4 D.15/4
网址:http://m.1010jiajiao.com/timu3_id_4462216[举报]
已知f (x)是定义在R上的不恒为零的函数,且对于任意的a、b∈R都满足f(a•b)=af(b)+bf(a).
(1)求f(0),f(1)的值;
(2)判断f (x)的奇偶性,并证明你的结论;
(3)若f(
)=-
,令bn=
,Sn表示数列{bn}的前n项和.试问:是否存在关于n的整式g (n),使得S1+S2+S3+…+Sn-1=(Sn-1)•g (n)对于一切不小于2的自然数n恒成立?若存在,写出g(n)的解析式,并加以证明;若不存在,试说明理由.
查看习题详情和答案>>
(1)求f(0),f(1)的值;
(2)判断f (x)的奇偶性,并证明你的结论;
(3)若f(
1 |
2 |
1 |
2 |
2n |
f(2n) |
已知f (x)是定义在R上的不恒为零的函数,且对于任意的a、b∈R都满足f(a•b)=af(b)+bf(a).
(1)求f(0),f(1)的值;
(2)判断f (x)的奇偶性,并证明你的结论;
(3)若表示数列{bn}的前n项和.试问:是否存在关于n的整式g (n),使得S1+S2+S3+…+Sn-1=(Sn-1)•g (n)对于一切不小于2的自然数n恒成立?若存在,写出g(n)的解析式,并加以证明;若不存在,试说明理由.
查看习题详情和答案>>
已知f (x)是定义在R上的不恒为零的函数,且对于任意的a、b∈R都满足f(a•b)=af(b)+bf(a).
(1)求f(0),f(1)的值;
(2)判断f (x)的奇偶性,并证明你的结论;
(3)若f(
)=-
,令bn=
,Sn表示数列{bn}的前n项和.试问:是否存在关于n的整式g (n),使得S1+S2+S3+…+Sn-1=(Sn-1)•g (n)对于一切不小于2的自然数n恒成立?若存在,写出g(n)的解析式,并加以证明;若不存在,试说明理由.
查看习题详情和答案>>
(1)求f(0),f(1)的值;
(2)判断f (x)的奇偶性,并证明你的结论;
(3)若f(
1 |
2 |
1 |
2 |
2n |
f(2n) |