摘要:点(a,0)在x轴负半轴上.则a<0.则-a>0.又1+a2>0,则点N(1+a2,-a)在第一象限.
网址:http://m.1010jiajiao.com/timu3_id_446128[举报]
已知:如图,⊙O1与⊙O2外切于点O,以直线O1O2为x轴,O为坐标原点,建立平面直角坐标系.在x轴上方的两圆的外公切线AB与⊙O1相切于点A,与⊙O2相切于点B,直线AB交y轴于点c,若OA=3
,OB=3.
(1)求经过O1、C、O2三点的抛物线的解析式;
(2)设直线y=kx+m与(1)中的抛物线交于M、N两点,若线段MN被y轴平分,求k的值;
(3)在(2)的条件下,点D在y轴负半轴上.当点D的坐标为何值时,四边形M
DNC是矩形?
查看习题详情和答案>>
| 3 |
(1)求经过O1、C、O2三点的抛物线的解析式;
(2)设直线y=kx+m与(1)中的抛物线交于M、N两点,若线段MN被y轴平分,求k的值;
(3)在(2)的条件下,点D在y轴负半轴上.当点D的坐标为何值时,四边形M
如图,抛物线y=x2-2mx+n+1的顶点A在x轴负半轴上,与y轴交于点B,C是抛物线上一点,且
点C的横坐标为1,AC=3
.
(1)求抛物线的函数关系式;
(2)若D是抛物线上一点,直线BD经过第一、二、四象限,且原点O到直线BD的距离为
,求点D的坐标;
(3)在(2)的条件下,直线BD上是否存在点P,使得以A、B、P为顶点的三角形与△AOB相似?若存在,求出点P的坐标;若不存在,请说明理由.
查看习题详情和答案>>
| 10 |
(1)求抛物线的函数关系式;
(2)若D是抛物线上一点,直线BD经过第一、二、四象限,且原点O到直线BD的距离为
8
| ||
| 5 |
(3)在(2)的条件下,直线BD上是否存在点P,使得以A、B、P为顶点的三角形与△AOB相似?若存在,求出点P的坐标;若不存在,请说明理由.
如图,在直角坐标系xOy中,直线AB交x轴于A(1,0),交y轴负半轴于B(0,-5),C为x轴正半轴上一点,且CA=
CO.
(1)求△ABC的面积.
(2)延长BA到P,使得PA=AB,求P点的坐标.
(3)如图,D是第三象限内一动点,且OD⊥BD,直线BE⊥CD于E,OF⊥OD交BE延长线于F.当D点运动时,
的大小是否发生变化?若改变,请说明理由;若不变,求出这个比值.

查看习题详情和答案>>
| 4 |
| 5 |
(1)求△ABC的面积.
(2)延长BA到P,使得PA=AB,求P点的坐标.
(3)如图,D是第三象限内一动点,且OD⊥BD,直线BE⊥CD于E,OF⊥OD交BE延长线于F.当D点运动时,
| OD |
| OF |
如图1所示,直角梯形OABC的顶点A、C分别在y轴正半轴与x轴负半轴上.过点B、C作直线l.将直线l平移,平移后的直线l与x轴交于点D,与y轴交于点E.
(1)将直线l向右平移,设平移距离CD为t(t≥0),直角梯形OABC被直线l扫过的面积(图中阴影部分)为s,s关于t的函数图象如图2所示,OM为线段,MN为抛物线的一部分,NQ为射线,N点横坐标为4.
①求梯形上底AB的长及直角梯形OABC的面积,
②当2<t<4时,求S关于t的函数解析式;
(2)在第(1)题的条件下,当直线l向左或向右平移时(包括l与直线BC重合),在直线AB上是否存在点P,使△PDE为等腰直角三角形?若存在,请直接写出所有满足条件的点P的坐标;若不存在,请说明理由.
查看习题详情和答案>>
(1)将直线l向右平移,设平移距离CD为t(t≥0),直角梯形OABC被直线l扫过的面积(图中阴影部分)为s,s关于t的函数图象如图2所示,OM为线段,MN为抛物线的一部分,NQ为射线,N点横坐标为4.
①求梯形上底AB的长及直角梯形OABC的面积,
②当2<t<4时,求S关于t的函数解析式;
(2)在第(1)题的条件下,当直线l向左或向右平移时(包括l与直线BC重合),在直线AB上是否存在点P,使△PDE为等腰直角三角形?若存在,请直接写出所有满足条件的点P的坐标;若不存在,请说明理由.