摘要:20. 已知f(x)是定义在上的奇函数.当x<0时.f(x)=x2-x-2.解不等式f(x)>0. 解: 设x>0.则 -x<0. ∴ f (-x)=(-x)2-(-x)-2=x2+x-2. 而f (x) 是奇函数. ∴ f (-x)=-f (x). 于是 f (x)=-x2-x+2.x>0. ∴ (1) 由 得 . (2) 由 得 . 综上所述.不等式f (x)>0的解集为{x∣x<-1或0<x<1.
网址:http://m.1010jiajiao.com/timu3_id_4461094[举报]
(本小题满分12分)
已知函数f(x)=lg(ax-bx)(a>1>b>0).
(1)求y=f(x)的定义域;
(2)在函数y=f(x)的图象上是否存在不同的两点,使得过这两点的直线平行于x轴;
(3)当a,b满足什么条件时,f(x)在(1,+∞)上恒取正值.
查看习题详情和答案>>
(本小题满分12分)已知函数f(x)=x2-1(x≥1)的图象是C1,函数y=g(x)的图象C2与C1关于直线y=x对称.
(1)求函数y=g(x)的解析式及定义域M;
(2)对于函数y=h(x),如果存在一个正的常数a,使得定义域A内的任意两个不等的值x1,x2都有|h(x1)-h(x2)|≤a|x1-x2|成立,则称函数y=h(x)为A的利普希茨Ⅰ类函数.试证明:y=g(x)是M上的利普希茨Ⅰ类函数;
(3)设A、B是曲线C2上任意不同两点,证明:直线AB与直线y=x必相交.
(1)求函数y=g(x)的解析式及定义域M;
(2)对于函数y=h(x),如果存在一个正的常数a,使得定义域A内的任意两个不等的值x1,x2都有|h(x1)-h(x2)|≤a|x1-x2|成立,则称函数y=h(x)为A的利普希茨Ⅰ类函数.试证明:y=g(x)是M上的利普希茨Ⅰ类函数;
(3)设A、B是曲线C2上任意不同两点,证明:直线AB与直线y=x必相交.