摘要:19. 三棱柱A1B1C1-ABC的侧面BCC1B1是菱形.∠CBB1=60°.AB⊥面BCC1B1. ⑴求证B1C⊥AC1 ⑵在侧面ACC1A1内是否存在一点P.使P-B1BC为正三棱维?证明你的结论.
网址:http://m.1010jiajiao.com/timu3_id_4461070[举报]
(本小题满分12分)如图,已知直三棱柱ABC—A1B1C1的侧棱长为2,底面△ABC是等腰直角三角形,且∠ACB=90°,AC=2,D是A A1的中点. (Ⅰ)求异面直线AB和C1D所成的角(用反三角函数表示);(Ⅱ)若E为AB上一点,试确定点E在AB上的位置,使得A1E⊥C1D;
(Ⅲ)在(Ⅱ)的条件下,求点D到平面B1C1E的距离.
查看习题详情和答案>>(本小题满分12分)
如图,已知三棱柱ABC-A1B1C1,侧面BCC1B1丄底面ABC.
(I)若M、N分别是AB,A1C的中点,求证:MN//平面BCC1B1
(II)若三棱柱ABC-A1B1C1的各棱长均为2,侧棱BB1与底面 ABC所成的角为60°.问在线段A1C1上是否存在一点P,使得平面B1CP丄平面ACC1A1,若存在,求C1P与PA1的比值,若不存在,说明 理由.
查看习题详情和答案>>
( 本小题满分12分)
如图,三棱柱ABC—A1B1C1中,底面为正三角形,侧棱与底面垂直,D是BC的中点,AA1=AB=1。
(1) 求证:A1C∥平面AB1D;
(2) 求点C到平面AB1D的距离。
查看习题详情和答案>>