摘要:17.证明:不等式成立.(n∈N)
网址:http://m.1010jiajiao.com/timu3_id_4460737[举报]
考察等式:
(*)
其中n,m,r∈N*,r≤m<n且r≤n-m,
某同学用概率论方法证明等式(*)如下:设一批产品共有n件,其中m件是次品,其余为正品,现从中随机取出r件产品,记事件Ak={取到的r件产品中恰有k件次品},则,k=0,1,…,r。显然A0,A1,…,Ar为互斥事件,且(必然事件),因此,
所以,,即等式(*)成立。
对此,有的同学认为上述证明是正确的,体现了偶然性与必然性的统一;但有的同学对上述证明方法的科学性与严谨性提出质疑.
现有以下四个判断:①等式(*)成立;②等式(*)不成立;③证明正确;④证明不正确,试写出所有正确判断的序号( )。
查看习题详情和答案>>
(*)
其中n,m,r∈N*,r≤m<n且r≤n-m,
某同学用概率论方法证明等式(*)如下:设一批产品共有n件,其中m件是次品,其余为正品,现从中随机取出r件产品,记事件Ak={取到的r件产品中恰有k件次品},则,k=0,1,…,r。显然A0,A1,…,Ar为互斥事件,且(必然事件),因此,
所以,,即等式(*)成立。
对此,有的同学认为上述证明是正确的,体现了偶然性与必然性的统一;但有的同学对上述证明方法的科学性与严谨性提出质疑.
现有以下四个判断:①等式(*)成立;②等式(*)不成立;③证明正确;④证明不正确,试写出所有正确判断的序号( )。
已知命题及其证明:
(1)当时,左边=1,右边=所以等式成立;
(2)假设时等式成立,即成立,
则当时,,所以时等式也成立。
由(1)(2)知,对任意的正整数n等式都成立。
经判断以上评述
A.命题、推理都正确 B命题不正确、推理正确
C.命题正确、推理不正确 D命题、推理都不正确
查看习题详情和答案>>