摘要:当a在内变化时.要使过三点O的圆的圆心在三角形AOB内.则a允许的最大值是( ) -2√2 (D) -2
网址:http://m.1010jiajiao.com/timu3_id_4459894[举报]
(2009•虹口区一模)已知函数f(x)=ax2+bx+c(a,b,c为实数,a≠0),定义域D:[-1,1]
(1)当a=1,b=-1时,若函数f(x)在定义域内恒小于零,求c的取值范围;
(2)当a=1,常数b<0时,若函数f(x)在定义域内恒不为零,求c的取值范围;
(3)当b>2a>0时,在D上是否存在x,使得|f(x)|>b成立?(要求写出推理过程)
查看习题详情和答案>>
(1)当a=1,b=-1时,若函数f(x)在定义域内恒小于零,求c的取值范围;
(2)当a=1,常数b<0时,若函数f(x)在定义域内恒不为零,求c的取值范围;
(3)当b>2a>0时,在D上是否存在x,使得|f(x)|>b成立?(要求写出推理过程)
(2003•东城区二模)已知抛物线C1:y2=4ax(a>0),椭圆C以原点为中心,以抛物线C1的焦点为右焦点,且长轴与短轴之比为
,过抛物线C1的焦点F作倾斜角为
的直线l,交椭圆C于一点P(点P在x轴上方),交抛物线C1于一点Q(点Q在x轴下方).
(Ⅰ)求点P和Q的坐标;
(Ⅱ)将点Q沿直线l向上移动到点Q′,使|QQ′|=4a,求过P和Q′且中心在原点,对称轴是坐标轴的双曲线的方程;
(Ⅲ)设点A(t,0)(常数t>4),当a在闭区间〔1,2〕内变化时,求△APQ面积的最大值,并求相应a的值.
查看习题详情和答案>>
| 2 |
| π |
| 4 |
(Ⅰ)求点P和Q的坐标;
(Ⅱ)将点Q沿直线l向上移动到点Q′,使|QQ′|=4a,求过P和Q′且中心在原点,对称轴是坐标轴的双曲线的方程;
(Ⅲ)设点A(t,0)(常数t>4),当a在闭区间〔1,2〕内变化时,求△APQ面积的最大值,并求相应a的值.
已知x1,x2是函数f(x)=ax2+bx+1(a,b∈R,a>0)的两个零点,函数f(x)的最小值为-a,记P={x|f(x)<0,x∈R}
(ⅰ)试探求x1,x2之间的等量关系(不含a,b);
(ⅱ)当且仅当a在什么范围内,函数g(x)=f(x)+2x(x∈P)存在最小值?
(ⅲ)若x1∈(-2,2),试确定b的取值范围.
查看习题详情和答案>>
(ⅰ)试探求x1,x2之间的等量关系(不含a,b);
(ⅱ)当且仅当a在什么范围内,函数g(x)=f(x)+2x(x∈P)存在最小值?
(ⅲ)若x1∈(-2,2),试确定b的取值范围.