摘要:已知椭圆的焦点为和.直线是椭圆的一条准线. (1)求椭圆的方程, (2)又设在此椭圆上.且.求的值.
网址:http://m.1010jiajiao.com/timu3_id_4459590[举报]
(本小题满分12分)
已知椭圆的焦点在轴上,离心率为,对称轴为坐标轴,且经过点.
(I)求椭圆的方程;
(II)直线与椭圆相交于、两点, 为原点,在、上分别存在异于点的点、,使得在以为直径的圆外,求直线斜率的取值范围.
查看习题详情和答案>>
(本小题满分12分)
已知椭圆的焦点在轴上,离心率为,对称轴为坐标轴,且经过点.
(I)求椭圆的方程;
(II)直线与椭圆相交于、两点, 为原点,在、上分别存在异于点的点、,使得在以为直径的圆外,求直线斜率的取值范围.
(本小题满分12分)已知椭圆 的焦点在 轴上,一个顶点的坐标是,离心率等于 .
(Ⅰ)求椭圆 的方程;
(Ⅱ)过椭圆 的右焦点 作直线 交椭圆 于 两点,交 轴于点,若,,求证: 为定值.
查看习题详情和答案>>