摘要:22. 已知关于的方程的两个根为.设函数. ① 判断在上的单调性, ② 若.证明.
网址:http://m.1010jiajiao.com/timu3_id_4459065[举报]
(本题满分14分
已知椭圆
:
的离心率为
,以原点为圆心,
椭圆的短半轴长为半径的圆与直线
相切.
⑴求椭圆C的方程;
⑵设
,
、
是椭圆
上关于
轴对称的任意两个不同的点,连结
交椭圆![]()
于另一点
,求直线
的斜率的取值范围;
⑶在⑵的条件下,证明直线
与
轴相交于定点.
查看习题详情和答案>>
(本题满分14分
已知椭圆
:
的离心率为
,以原点为圆心,
椭圆的短半轴长为半径的圆与直线
相切.
⑴求椭圆C的方程;
⑵设
,
、
是椭圆
上关于
轴对称的任意两个不同的点,连结
交椭圆
于另一点
,求直线
的斜率的取值范围;
⑶在⑵的条件下,证明直线
与
轴相交于定点.
已知椭圆
椭圆的短半轴长为半径的圆与直线
⑴求椭圆C的方程;
⑵设
于另一点
⑶在⑵的条件下,证明直线
(本题满分14分)已知函数
(
为常数,
).
(Ⅰ)当
时,求函数
在
处的切线方程;
(Ⅱ)当
在
处取得极值时,若关于
的方程
在[0,2]上恰有两个不相等的实数根,求实数
的取值范围;
(Ⅲ)若对任意的
,总存在
,使不等式
成立,求实数
的取值范围.
查看习题详情和答案>>