摘要:已知两定点M.动点P在轴上的射影是H.如果和分别是公比为2的等比数列的第三.第四项. (Ⅰ)求动点P的轨迹方程的C; (Ⅱ)已知过点N的直线l交曲线C于x轴下文两个不同点A.B,R为AB的中点.若过R与定点Q的直线交x轴于点D(x0,-2).求x0的取值范围.
网址:http://m.1010jiajiao.com/timu3_id_4458300[举报]
(本小题满分14分)在周长为定值的
中,已知
,动点
的运动轨迹为曲线G,且当动点
运动时,
有最小值
.
(1)以
所在直线为
轴,线段
的中垂线为
轴建立直角坐标系,求曲线G的方程.
(2)过点(m,0)作圆x2+y2=1的切线l交曲线G于M,N两点.将线段MN的长|MN|表示为m的函数,并求|MN|的最大值.
查看习题详情和答案>>
(本小题满分14分)
如图,已知椭圆
的左、右焦点分别为
短轴两的端点为A、B,且四边形
是边长为2的正方形.
(Ⅰ)求椭圆的方程;
(Ⅱ)若C、D分别是椭圆长轴的左、右端点,动点M满足MD
连结
交椭圆于点
证明:
为定值;
(Ⅲ)在(Ⅱ)的条件下,试问
轴上是否存在异于点
的定点
,使得以
为直径的圆恒过直线
的交点,若存在,求出点
的坐标;若不存在,说明理由.
.(本小题满分14分)
已知圆M:
及定点
,点P是圆M上的动点,点Q在NP上,点G在MP上,且满足![]()
(1)求点G的轨迹C的方程;
(2)过点K(2,0)作直线
与曲线C交于A、B两点,O是坐标原点,设
是否存在这样的直线
使四边形OASB的对角线相等?若存在,求出直线
的方程;若不存在,说明理由.
![]()
查看习题详情和答案>>