摘要: 点是椭圆的短轴端点.椭圆的右焦点为F.为等边三角形.点F到椭圆右准线l的距离为1. (1)求椭圆方程, (2)求经过点O.F且与右准线l相切的圆的方程.
网址:http://m.1010jiajiao.com/timu3_id_4457674[举报]
(本题满分14分)已知椭圆C:=1(a>b>0)的离心率为
,短轴一
个端点到右焦点的距离为3.
(1)求椭圆C的方程;
(2)过椭圆C上的动点P引圆O:的两条切线PA、PB,A、B分别为切点,试探究椭圆C上是否存在点P,由点P向圆O所引的两条切线互相垂直?若存在,请求出点P的坐标;若不存在,请说明理由.
查看习题详情和答案>>
(本题满分14分)已知椭圆C:=1(a>b>0)的离心率为
,短轴一
个端点到右焦点的距离为3.
(1)求椭圆C的方程;
(2)过椭圆C上的动点P引圆O:的两条切线PA、PB,A、B分别为切点,试探究椭圆C上是否存在点P,由点P向圆O所引的两条切线互相垂直?若存在,请求出点P的坐标;若不存在,请说明理由.
(本小题满分14分)已知椭圆:
的离心率是
,其左、右顶点分别为
,
,
为短轴的端点,△
的面积为
.
(Ⅰ)求椭圆的方程;
(Ⅱ)为椭圆
的右焦点,若点
是椭圆
上异于
,
的任意一点,直线
,
与直线
分别交于
,
两点,证明:以
为直径的圆与直线
相切于点
.
查看习题详情和答案>>