摘要:7.如果实数a, b同时满足以下两个不等式:0<ab<1, 0<a+b<1+a2b2, 那么必有( ). (A) (B)且a<1或者且b<1 (C)0<a<1且0<b<1 (D)以上都不对
网址:http://m.1010jiajiao.com/timu3_id_4453377[举报]
函数f(x)=
x2-(a+b)
+
,g(x)=ax2-b(a、b、x∈R)),A={x|
x2-3
+
≤0}
(Ⅰ)求集合A;
(Ⅱ)如果b=0,对任意x∈A时,f(x)≥0恒成立,求实数a的范围;
(Ⅲ)如果b>0,当“f(x)≥0对任意x∈A恒成立”与“g(x)≤0在x∈A内必有解”同时成立时,求3a+b的最大值.
查看习题详情和答案>>
| 1 |
| 2 |
| x2+1 |
| 9 |
| 2 |
| 1 |
| 2 |
| x2+1 |
| 9 |
| 2 |
(Ⅰ)求集合A;
(Ⅱ)如果b=0,对任意x∈A时,f(x)≥0恒成立,求实数a的范围;
(Ⅲ)如果b>0,当“f(x)≥0对任意x∈A恒成立”与“g(x)≤0在x∈A内必有解”同时成立时,求3a+b的最大值.
已知f (x)、g(x)都是定义在R上的函数,如果存在实数m、n使得h (x)=m f(x)+ng(x),那么称h (x)为f (x)、g(x)在R上生成的一个函数.设f (x)=x2+ax,g(x)=x+b(a,b∈R),l(x)=2x2+3x-1,h (x)为f (x)、g(x)在R上生成的一个二次函数.
(Ⅰ)设a=1,b=2,若h (x)为偶函数,求h(
);
(Ⅱ)设b>0,若h (x)同时也是g(x)、l(x)在R上生成的一个函数,求a+b的最小值;
(Ⅲ)试判断h(x)能否为任意的一个二次函数,并证明你的结论. 查看习题详情和答案>>
(Ⅰ)设a=1,b=2,若h (x)为偶函数,求h(
| 2 |
(Ⅱ)设b>0,若h (x)同时也是g(x)、l(x)在R上生成的一个函数,求a+b的最小值;
(Ⅲ)试判断h(x)能否为任意的一个二次函数,并证明你的结论. 查看习题详情和答案>>
已知函数f(x)定义域为R且同时满足:①f(x)图象左移1个单位后所得函数为偶函数;②对于任意大于1的不等实数a,b,总有
>0成立.
(1)f(x)的图象是否有对称轴?如果有,写出对称轴方程.并说明在区间(-∞,1)上f(x)的单调性;
(2)设g(x)=
+
,如果f(0)=1,判断g(x)=0是否有负实根并说明理由;
(3)如果x1>0,x2<0且x1+x2+2<0,比较f(-x1)与f(-x2)的大小并简述理由.
查看习题详情和答案>>
| f(a)-f(b) |
| a-b |
(1)f(x)的图象是否有对称轴?如果有,写出对称轴方程.并说明在区间(-∞,1)上f(x)的单调性;
(2)设g(x)=
| 1 |
| f(x) |
| 1 |
| 2-x |
(3)如果x1>0,x2<0且x1+x2+2<0,比较f(-x1)与f(-x2)的大小并简述理由.