摘要:25.已知:如图.在平面直角坐标系中.点C在轴上.以C为圆心.4cm为半径的圆与轴相交于点A.B.与轴相交于D.E.且︵AB=︵BD .点P是⊙C上一动点.连结BP.AP. (1)求∠BPA的度数, (2)若过点P的⊙C的切线交轴于点G.是否存在点P.使△APB与以A.G.P为顶点的三角形相似?若存在.求出点P的坐标,若不存在.说明理由.
网址:http://m.1010jiajiao.com/timu3_id_443049[举报]
已知:如图,在平面直角坐标系中,正方形 OABC的顶点B的坐标为(2,2),A、C两点分别在x轴、y轴上.P是BC边上一点(不与B点重合),连AP并延长与x轴交于点E,当点P在边BC上移动时,△AOE的面积随之变化.
①设PB=a(0<a≤2).求出△AOE的面积S与a的函数关系式.
②根据①的函数关系式,确定点P在什么位置时,S△AOE=2,并求出此时直线AE的解析式.
③在所给的平面直角坐标系中画出①中函数的图象和函数S=-a+2的简图.
④设函数S=-a+2的图象交a轴于点G,交S轴于点D,点M是①的函数图象上的一动点,过M点向S轴作垂线交函数S=-a+2的图象于点H,过M点向a轴作垂线交函数S=-a+2的图象于点Q,请问DQ•HG的值是否会变化?若不变,
请求出此值;若变化,请说明理由.
查看习题详情和答案>>
①设PB=a(0<a≤2).求出△AOE的面积S与a的函数关系式.
②根据①的函数关系式,确定点P在什么位置时,S△AOE=2,并求出此时直线AE的解析式.
③在所给的平面直角坐标系中画出①中函数的图象和函数S=-a+2的简图.
④设函数S=-a+2的图象交a轴于点G,交S轴于点D,点M是①的函数图象上的一动点,过M点向S轴作垂线交函数S=-a+2的图象于点H,过M点向a轴作垂线交函数S=-a+2的图象于点Q,请问DQ•HG的值是否会变化?若不变,
(1)求点C的坐标;
(2)求直线AD的解析式. 查看习题详情和答案>>
已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C的坐标分别为A(-3,0)
,C(1,0),tan∠BAC=
.
(1)求过点A,B的直线的函数表达式;
(2)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;
(3)在(2)的条件下,如P,Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,问是否存在这样的m,使得△APQ与△ADB相似?如存在,请求出m的值;如不存在,请说明理由. 查看习题详情和答案>>
| 3 | 4 |
(1)求过点A,B的直线的函数表达式;
(2)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;
(3)在(2)的条件下,如P,Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,问是否存在这样的m,使得△APQ与△ADB相似?如存在,请求出m的值;如不存在,请说明理由. 查看习题详情和答案>>