摘要: 抛物线的图像与x轴交于(x1,0)(x2,0)两点.且0< x1<1,1< x2<2,且与y轴交于点2a+b>1 a+b<2 (4)a<-1.其中正确的结论的个数为个. A.1 B.2 C.3 D.4
网址:http://m.1010jiajiao.com/timu3_id_439972[举报]
如图, 已知抛物线
与y轴相交于C,与x轴相交于A、B,点A的坐标为(-1,0),点C的坐标为(0,-3),抛物线的顶点为D.
1.求抛物线的解析式和顶点D的坐标
2.二次函数的图像上是否存在点P,使得S△PAB=8S△ABD?若存在,求出P点坐标;若不存在,请说明理由;
3.若抛物线的对称轴与x轴交于E点,点F在直线BC上,点M在的二次函数图像上,如果以点F、M、D、E为顶点的四边形是平行四边形,请你求出符合条件的点M的坐标.
![]()
查看习题详情和答案>>
如图,在平面直角坐标系中,二次函数y=ax2+bx+2的图像与y轴交于点A,对称轴是直线x=
,以OA为边在y轴右侧作等边三角形OAB,点B恰好在该抛物线上。动点P在x轴上,以PA为边作等边三角形APQ(△APQ的顶点A、P、Q按逆时针标记)。
(1)求点B的坐标与抛物线的解析式;
(2)当点P 在如图位置时,求证:△APO≌△AQB;
(3)当点P在x轴上运动时,点Q刚好在抛物线上,求点Q的坐标;
(4)探究:是否存在点P,使得以A、O、Q、B为顶点的四边形是梯形?若存在,请求出点P的坐标;若不存在,请说明理由。
(1)求点B的坐标与抛物线的解析式;
(2)当点P 在如图位置时,求证:△APO≌△AQB;
(3)当点P在x轴上运动时,点Q刚好在抛物线上,求点Q的坐标;
(4)探究:是否存在点P,使得以A、O、Q、B为顶点的四边形是梯形?若存在,请求出点P的坐标;若不存在,请说明理由。