摘要: 我们知道:由于圆是中心对称图形.所以过圆心的任何一条直线都可以将圆分割成面积相等的两部分. 探索下列问题: (1)在图11-2给出的四个正方形中.各画出一 条直线(依次是:水平方向的直线.竖直方 向的直线.与水平方向成45°角的直线和 任意的直线).将每个正方形都分割成面积 相等的两部分, (2)一条竖直方向的直线m以及任意的直线n. 在由左向右平移的过程中.将正六边形分成 左右两部分.其面积分别记为S1和S2. ①请你在图11-3中相应图形下方的横线上 分别填写S1与S2的数量关系式(用“< . “= .“> 连接), ②请你在图11-4中分别画出反映S1与S2 三种大小关系的直线n.并在相应图形下 方的横线上分别填写S1与S2的数量关系 式(用“< .“= .“> 连接). (3)是否存在一条直线.将一个任意的平面图形分割成面积相等的两部分?请简略说出理由.
网址:http://m.1010jiajiao.com/timu3_id_438095[举报]
我们知道:由于圆是中心对称图形有,所以过圆心的任何一条直线都可以将圆分割成面积相等的两部分(如图1)。
探索下列问题:
(
1)在图2给出的四个正方形中,各画出一条直线(依次是:水平方向的直线、竖直方向的直线、与水平方向成45°角的直线和任意直线),将每个正方形都分割成面积相等的两部分;![]()
(2
)一条竖直方向的直线m以及任意直线n,在由左向右平移的过程中,将六边形分成左右两部分,其面积分别记为S1和S2。① 你在图3中相应图形下方的横线上分别填写S1与S2的数量关系式(用摚紨,摚綌,摚緮连接);
![]()
② 请你在图4中分别画出反映S1与S2三种大小关系的直线n,并在相应图形下方的横线上分别填写S1与S2的数量关系式(用摚紨,摚綌,摚緮连接)。
![]()
(3
)是否存在一条直线,将一个任意平面图形(如图11-5)分割成面积相等的两部分?请简略说明理由。
探索下列问题:
(1)在如图2给出的四个正方形中,各画出一条直线(依次是:水平方向的直线、竖直方向的直线、与水平方向成45°角的直线和任意的直线),将每个正方形都分割成面积相等的两部分;
(2)一条竖直方向的直线m以及任意的直线n,在由左向右平移的过程中,将正六边形分成左右两部分,其面积分别记为S1和S2.
①请你在如图3中相应图形下方的横线上分别填写S1与S2的数量关系式(用“<”,“=”,“>”连接);
②请你在如图4中分别画出反映S1与S2三种大小关系的直线n,并在相应图形下方的横线上分别填写S1与S2的数量关系式(用“<”,“=”,“>”连接).
(3)是否存在一条直线,将一个任意的平面图形(如图5)分割成面积相等的两部分?请简略说出理由.
我们知道:由于圆是中心对称图形,所以过圆心的任何一条直线都可以将圆分割成面积相等的两部分(如图1).
探索下列问题:
(1)在如图2给出的四个正方形中,各画出一条直线(依次是:水平方向的直线、竖直方向的直线、与水平方向成45°角的直线和任意的直线),将每个正方形都分割成面积相等的两部分;
(2)一条竖直方向的直线m以及任意的直线n,在由左向右平移的过程中,将正六边形分成左右两部分,其面积分别记为S1和S2.
①请你在如图3中相应图形下方的横线上分别填写S1与S2的数量关系式(用“<”,“=”,“>”连接);
②请你在如图4中分别画出反映S1与S2三种大小关系的直线n,并在相应图形下方的横线上分别填写S1与S2的数量关系式(用“<”,“=”,“>”连接).
(3)是否存在一条直线,将一个任意的平面图形(如图5)分割成面积相等的两部分?请简略说出理由.
查看习题详情和答案>>
探索下列问题:
(1)在如图2给出的四个正方形中,各画出一条直线(依次是:水平方向的直线、竖直方向的直线、与水平方向成45°角的直线和任意的直线),将每个正方形都分割成面积相等的两部分;
(2)一条竖直方向的直线m以及任意的直线n,在由左向右平移的过程中,将正六边形分成左右两部分,其面积分别记为S1和S2.
①请你在如图3中相应图形下方的横线上分别填写S1与S2的数量关系式(用“<”,“=”,“>”连接);
②请你在如图4中分别画出反映S1与S2三种大小关系的直线n,并在相应图形下方的横线上分别填写S1与S2的数量关系式(用“<”,“=”,“>”连接).
(3)是否存在一条直线,将一个任意的平面图形(如图5)分割成面积相等的两部分?请简略说出理由.
我们知道:由于圆是中心对称图形,所以过圆心的任何一条直线都可以将圆分割成面积相等的两部分(如图1)
(1)在图2中给出的四个正方形中,各画出一条直线(依次是:水平方向的直线、竖直方向的直线、与水平方向成45°角的直线和任意的直线),将每个正方形都分割成面积相等的两部分;
(2)一条竖直方向的直线m以及任意的直线n,在由左向右平移的过程中,将正六边形分成左右两部分,其面积分别记为S1和S2。
①请你写出图3中S1,S2的数量关系;(用“<”,“>”,“=”表示)
②请你在图4中分别画出反映S1与S2三种大小关系的直线n,并分别写出相应图形的S1与S2的数量关系式(用“<”,“=”,“>”连接);
(3)是否存在一条直线,将一个任意的平面图形(如图5所示)分割成面积相等的两部分?请简略说出理由。
查看习题详情和答案>>
(2)一条竖直方向的直线m以及任意的直线n,在由左向右平移的过程中,将正六边形分成左右两部分,其面积分别记为S1和S2。
①请你写出图3中S1,S2的数量关系;(用“<”,“>”,“=”表示)
②请你在图4中分别画出反映S1与S2三种大小关系的直线n,并分别写出相应图形的S1与S2的数量关系式(用“<”,“=”,“>”连接);
(3)是否存在一条直线,将一个任意的平面图形(如图5所示)分割成面积相等的两部分?请简略说出理由。
我们知道:由于圆是中心对称图形,所以过圆心的任何一条直线都可以将圆分割成面积相等的两部分(如图(1))
探索下列问题:
(1)在图(2)给出的四个正方形中,各画出一条直线(依次是:水平方向的直线、竖直方向的直线、与水平方向成
角的直线和任意的直线),将每个正方形都分割成面积相等的两部分;
(2)一条竖直方向的直线m以及任意的直线n,在由左向右平移的过程中,将正六边形分成左右两部分,其面积分别记为S1和S2.
①请你在图中相应图形下方的横线上分别填写S1与S2的数量关系式(用“<”,“=”,“>”连接);
![]()
②请你在图中分别画出反映S1与S2三种大小关系的直线n,并在相应图形下方的横线上分别填写S1与S2的数量关系式(用“<”,“=”,“>”连接).
![]()
(3)是否存在一条直线将一个任意的平面图形(如图)分割成面积相等的两部分?请简略说出理由.