摘要: 如图.在△ABC中.D是AB的中点.E是CD的中点. 过点C作CF∥AB交AE的延长线于点F.连接BF. 求证:DB=CF, 如果AC=BC.试判断四边彤BDCF的形状. 并证明你的结论.
网址:http://m.1010jiajiao.com/timu3_id_435820[举报]
(本小题满分8分)
已知,在△ABC中,∠BAC=90°,AB=AC,BC=
,点D、E在BC边上(均不与点B、C重合,点D始终在点E左侧),且∠DAE=45°.
1.(1)请在图①中找出两对相似但不全等的三角形,写在横线上 , ;
2.(2)设BE=m,CD=n,求m与n的函数关系式,并写出自变量n的取值范围;
3.(3)如图②,当BE=CD时,求DE的长;
4.(4)求证:无论BE与CD是否相等,都有DE2=BD2+CE2.
![]()
查看习题详情和答案>>
(本小题满分12分)
如图甲,在△ABC中,∠ACB为锐角.点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.
(1)如果AB=AC,∠BAC=90º.
解答下列问题:
①当点D在线段BC上时(与点B不重合),如图甲,线段CF、BD之间的位置关系为 ,数量关系为 .
②当点D在线段BC的延长线上时,如图乙,①中的结论是否仍然成立,为什么?(要求写出证明过程)
(2)如果AB≠AC,∠BAC≠90°,点D在线段BC上运动.且∠BCA=45°时,如图丙请你判断线段CF、BD之间的位置关系,并说明理由(要求写出证明过程).
查看习题详情和答案>>