题目内容
(本小题满分12分)
如图甲,在△ABC中,∠ACB为锐角.点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.
(1)如果AB=AC,∠BAC=90º.
解答下列问题:
①当点D在线段BC上时(与点B不重合),如图甲,线段CF、BD之间的位置关系为 ,数量关系为 .
②当点D在线段BC的延长线上时,如图乙,①中的结论是否仍然成立,为什么?(要求写出证明过程)
(2)如果AB≠AC,∠BAC≠90°,点D在线段BC上运动.且∠BCA=45°时,如图丙请你判断线段CF、BD之间的位置关系,并说明理由(要求写出证明过程).
(1) ①CF ⊥BD,FC=BD.…………2分
②当点D在BC的延长线上时①的结论仍成立.…………………3分
证明:∵正方形ADEF,
∴AD=AF,∠DAF=90°,
∵∠DAF=∠BAC,
∴∠DAF+∠CAD=∠BAC+∠CAD,
即:∠DAB=∠FAC,
∵AB=AC,AD=AF,
∴△DAB≌△FAC,
∴CF=BD,∠ACF=∠B, …………………6分
∵∠BAC=90°,AB=AC,
∴∠ABC=45°,
∴∠ACF=∠ACB+∠ACF=∠ACB+∠ABC=90°,
即CF⊥BD. …………………8分
(2)当∠BCA=45°,CF⊥BD, …………………9分
证明:过点A作AG⊥AC于A交BC于点G,
∴∠AGC+∠ACG=90°,
∵∠ACG=45°,
∴∠AGC=∠ACG=45°,
∴AC=AG,
与(1)②同理,CF⊥GD,即CF⊥BD. …………………12分
解析:略