摘要:20.否,大于,因为此时QC<KC.反应正在正向进行. 拓展提高
网址:http://m.1010jiajiao.com/timu3_id_323728[举报]
Pb+PbO2+4H++2SO42-
| ||
| 充电 |
(1)当K闭合时,a电极的电极反应式是
PbO2+2e-+4H++SO42-=PbSO4+2H2O
PbO2+2e-+4H++SO42-=PbSO4+2H2O
;放电过程中SO42-向b
b
极迁移.当K闭合一段时间后,再打开K,Ⅱ可单独作为原电池使用,此时c电极的电极反应式为Pb-2e-+SO42-=PbSO4
Pb-2e-+SO42-=PbSO4
.(2)铅的许多化合物,色彩缤纷,常用作颜料,如铬酸铅是黄色颜料,碘化铅是金色颜料(与硫化锡齐名),室温下碘化铅在水中存在如下平衡:PbI2(S)?Pb2+(aq)+2I-(aq).
①该反应的溶度积常数表达式为Ksp=
c(Pb2+)?c2(I-)
c(Pb2+)?c2(I-)
.②已知在室温时,PbI2的溶度积Ksp=8.0×10-9,则100mL 2×10-3mol/L的碘化钠溶液中,加入100mL2×10-2mol/L的硝酸铅溶液,通过计算说明是否能产生PbI2沉淀
Qc=10-2?(10-3)2=10-8>Ksp,能产生PbI2沉淀
Qc=10-2?(10-3)2=10-8>Ksp,能产生PbI2沉淀
.③探究浓度对碘化铅沉淀溶解平衡的影响
该化学小组根据所提供试剂设计两个实验,来说明浓度对沉淀溶解平衡的影响.
提供试剂:NaI饱和溶液、NaCl饱和溶液、FeCl3饱和溶液、PbI2饱和溶液、PbI2悬浊液;
信息提示:Pb2+和Cl-能形成较稳定的PbCl42-络离子.
请填写下表的空白处:
| 实验内容 | 实验方法 | 实验现象及原因分析 |
| ①碘离子浓度增大对平衡的影响 | 取PbI2饱和溶液少量于一支试管中,再加入少量NaI饱和溶液, 取PbI2饱和溶液少量于一支试管中,再加入少量NaI饱和溶液, |
溶液中出现黄色浑浊. 原因是溶液中c(I-)增大,使Qc大于了pbI2的Ksp 溶液中出现黄色浑浊. 原因是溶液中c(I-)增大,使Qc大于了pbI2的Ksp |
| ②铅离子浓度减小对平衡的影响 | 取PbI2悬浊液少量于一支试管中,再加入少量NaCl饱和溶液 取PbI2悬浊液少量于一支试管中,再加入少量NaCl饱和溶液 |
黄色浑浊消失 原因是形成PbCl42-,导致溶液中c(Pb2+)减小,使Qc小于了pbI2的Ksp 黄色浑浊消失 原因是形成PbCl42-,导致溶液中c(Pb2+)减小,使Qc小于了pbI2的Ksp |
| ③ 铅离子和碘离子浓度都减小对平衡的影响 铅离子和碘离子浓度都减小对平衡的影响 |
在PbI2悬浊液中加入少量FeCl3饱和溶液 | PbI2 +2Fe3++4Cl-=PbCl42-+2Fe2++I2 PbI2 +2Fe3++4Cl-=PbCl42-+2Fe2++I2 |
⑤至于碳酸铅,早在古代就被用作白色颜料.考古工作者发掘到的古代壁画或泥俑,其中人脸常是黑色的.经过化学分析和考证,证明这黑色的颜料是铅的化合物--硫化铅(已知PbCO3的
Ksp=1.46×10-13,PbS的Ksp=9.04×10-29)试分析其中奥妙
PbCO3的Ksp=1.46×10-13 >PbS的Ksp=9.04×10-29 故PbCO3与S2-接触时,转化为更难溶的黑色的PbS了
PbCO3的Ksp=1.46×10-13 >PbS的Ksp=9.04×10-29 故PbCO3与S2-接触时,转化为更难溶的黑色的PbS了
.CO(g)+H2O(g)═CO2(g)+H2 (g)△H<0.
(1)CO和H2O浓度变化如右图,则在该温度下,该反应的平衡常数K=
| c(CO2)?c(H2) |
| c(CO)?c(H2O) |
| c(CO2)?c(H2) |
| c(CO)?c(H2O) |
0.03
0.03
mol?L-1?min-1.若降低温度,该反应的K值将增大
增大
,该反应的化学反应速率将减小
减小
(填“增大”“减小”或“不变”).(2)在相同容器中发生上述反应,当温度高于850℃时,容器内各物质的浓度变化如下表.
| 时间(min) | CO | H2O | CO2 | H2 |
| 0 | 0.200 | 0.300 | 0 | 0 |
| 2 | 0.138 | 0.238 | 0.062 | 0.062 |
| 3 | c1 | c2 | c3 | c3 |
| 4 | c1 | c2 | c3 | c3 |
| 5 | 0.116 | 0.216 | 0.084 | |
| 6 | 0.096 | 0.266 | 0.104 |
平衡
平衡
状态; c1数值等于
等于
0.08mol?L-1 (填大于、小于或等于).②反应在4min~5min间,平衡向逆方向移动,可能的原因是
d
d
a.增加水蒸气 b.降低温度 c.使用催化剂 d.增加氢气浓度
(3)在相同温度下(850℃),若起始时c(CO)=1mol?L-1,c(H2O)=2mol?L-1,反应进行一段时间后,测得H2的浓度为0.5mol?L-1,则此时该反应是否达到平衡状态
否
否
(填“是”与“否”),此时v(正)>
>
v(逆)(填“大于”“小于”或“等于”),你判断的依据是浓度商Qc=
=
,小于平衡常数K
| 0.5×0.5 |
| 0.5×1.5 |
| 1 |
| 3 |
浓度商Qc=
=
,小于平衡常数K
.| 0.5×0.5 |
| 0.5×1.5 |
| 1 |
| 3 |
(1)煤的汽化和液化可以提高燃料的利用率.
已知25℃,101kPa时:C(s)+1/2O2(g)=CO(g)△H=-126.4kJ?mol-1
2H2(g)+O2(g)=2H2O(l)△H=-571.6kJ?mol-1
H2O(g)=H2O(l)△H=-44kJ?mol-1
则在25℃,101kPa时:C(s)+H2O(g)=CO(g)+H2(g)△H=
115.4 kJ?mol-1
115.4 kJ?mol-1
.(2)高炉炼铁是CO气体的重要用途之一,其基本反应为:
FeO(s)+CO(g) Fe(s)+CO2(g)△H>0,已知在1100℃时,该反应的化学平衡常数K=0.263.
①温度升高,化学平衡移动后达到新的平衡,此时平衡常数K值
增大
增大
(填“增大”、“减小”或“不变”);②1100℃时测得高炉中,c(CO2)=0.025mol?L-1,c(CO)=0.1mol?L-1,则在这种情况下,该反应是否处于化学平衡状态
否
否
(填“是”或“否”),其判断依据是因为Qc=c(CO2)/c(CO)=0.25<K=0.263
因为Qc=c(CO2)/c(CO)=0.25<K=0.263
.(3)目前工业上可用CO2来生产燃料甲醇,有关反应为:CO2(g)+3H2(g)?CH3OH(g)+H2O(g)△H=-49.0kJ?mol-1.现向体积为1L的密闭容器中,充入1mol CO2和3mol H2,反应过程中测得CO2和CH3OH(g)的浓度随时间的变化如图所示.
①从反应开始到平衡,氢气的平均反应速率v(H2)=
0.225 mol/(L?min)
0.225 mol/(L?min)
;②下列措施能使
| c(CH3OH) | c(CO2) |
BD
BD
(填符号).A.升高温度 B.再充入H2 C.再充入CO2
D.将H2O(g)从体系中分离 E.充入He(g),使体系压强增大.