摘要:3.在1781年.人们发现了太阳的第七颗行星--天王星.但观测出的天王星轨道.总是同根据万有引力定律计算出来的轨道有一定的偏离.这是由于 A.太阳的引力作用 B.地球的引力作用 C.万有引力定律的准确性有问题 D.海王星的引力作用
网址:http://m.1010jiajiao.com/timu3_id_1536024[举报]
资料:理论分析表明,逃逸速度是环绕速度的
倍,即v′=
,由此可知,天体的质量M越大,半径R越小,逃逸速度也就越大,也就是说,其表面的物体就越不容易脱离它的束缚,有些恒星,在它一生的最后阶段,强大的引力把其中的物质紧紧的压在一起,密度极大,每立方米的质量可达数千吨,它们的质量非常大,半径又非常小,其逃逸速度非常大.于是,我们自然要想,会不会有这样的天体,它的质量更大,半径更小,逃逸速度更大,以3.00×108m/s的速度传播的光都不能逃逸?如果宇宙中真的存在这样的天体,即使它确实在发光,光也不能进入太空,我们根本看不到它,这种天体称为黑洞.1970年,科学家发现了第一个很可能是黑洞的目标.已知,G=6.67×10-11N?m/kg 2,C=3.00×108m/s,求:
(1)逃逸速度大于真空中光速的天体叫黑洞,设某黑洞的质量等于太阳的质量M=1.98×1030kg,求它的可能最大半径(此小题结果用科学计数法表示,小数点后保留2位,不得使用计算器)
(2)在目前天文观测范围内,物质的平均密度为ρ,如果认为我们宇宙是这样一个均匀大球体,其密度使得它的逃逸速度大于光在真空中的速度C,因此任何物体都不能脱离宇宙,问宇宙的半径至少多大?(球的体积计算方程V=
πR3,此小题结果用题中所给字母表示)
查看习题详情和答案>>
| 2 |
|
(1)逃逸速度大于真空中光速的天体叫黑洞,设某黑洞的质量等于太阳的质量M=1.98×1030kg,求它的可能最大半径(此小题结果用科学计数法表示,小数点后保留2位,不得使用计算器)
(2)在目前天文观测范围内,物质的平均密度为ρ,如果认为我们宇宙是这样一个均匀大球体,其密度使得它的逃逸速度大于光在真空中的速度C,因此任何物体都不能脱离宇宙,问宇宙的半径至少多大?(球的体积计算方程V=
| 4 |
| 3 |