摘要:18. 开始时.A.B静止.设弹簧压缩量为x1.有 kx1=m1g---------- 小孩挂上离开后.小孩下向运动.A向上运动.设B刚要离开地时弹簧伸长量为x2.有 kx2=m2g---------- B 不再上升.表示上此时A和小孩的速度为零.小孩已降到其最底点.由机械能守恒.它与初始状态相比.弹簧弹性势能的增加量为 E=mg(x1+x2)-m1g(x1+x2)-- 小孩换成大人后.当B刚离开地时弹簧势能的增量与前一次相同.由能量关系得 ---- 由式得 ----- 由式得 -----------------
网址:http://m.1010jiajiao.com/timu3_id_1525842[举报]
| 1 |
| k |
(l)小球第一次接触Q时的速度大小;
(2)假设小球第n次弹回两板间后向右运动的最远处没有到达B板,试导出小球从第n次接触Q,到本次向右运动至最远处的时间Tn的表达式;
(3)若k=2,且小孔右侧的轨道粗糙与带电小球间的滑动摩擦力为f=
| qE |
| 4 |
| 1 | k |
(1)小球第一次接触薄板Q后,则弹簧的弹性势能多大;
(2)假设小球被第N次弹回两板间后向右运动的最远处恰好到达B板,小球从开始运动到被第N次弹回两板间向右运动到达B板的总时间.
| A、(mg-f)(H-L+x) | B、mg(H-L+x)-F(H-L) | C、mgH-f(H-L) | D、mg(L-x)+f(H-L+x) |
如图所示,A、B是两块竖直放置的平行金属板,相距为2L,分别带有等量的负、正电荷,在两板间形成电场强度大小为E的匀强电场A板上有一小孔(它的存在对两板间匀强电场分布的影响可忽略不计),孔的下沿右侧有一条与板垂直的水平光滑绝缘轨道,一个质量为m,电荷量为q(q>0)的小球(可视为质点),在外力作用下静止在轨道的中点P处.孔的下沿左侧也有一与板垂直的水平光滑绝缘轨道,轨道上距A板L处有一固定档板,长为L的轻弹簧左端固定在挡板上,右端固定一块轻小的绝缘材料制成的薄板Q.撤去外力释放带电小粒,它将在电场力作用下由静止开始向左运动,穿过小孔后(不与金属板A接触)与薄板Q一起压缩弹簧,由于薄板Q及弹簧的质量都可以忽略不计,可认为小球与Q接触过程中不损失机械能.小球从接触Q开始,经历时间To第一次把弹簧压缩至最短,然后又被弹簧弹回。由于薄板Q的绝缘性能有所欠缺,使得小球每次离开Q瞬间,小球的电荷量都损失一部分,而变成刚与Q接触时小球电荷量的
求:
![]()
(l)小球第一次接触Q时的速度大小,
(2)假设小球第n次弹回两板间后向右运动的最远处没有到达B板,试导出小球从第n次接触Q,到本次向右运动至最远处的时间Tn的表达式,
(3)若k=2,且小孔右侧的轨道粗糙与带电小球间的滑动摩擦力为f=qE/4,试求带电小球最终停止的位置距P点的距离.
查看习题详情和答案>>
如图所示,A、B是两块竖直放置的平行金属板,相距为2L,分别带有等量的负、正电荷,在两板间形成电场强度大小为E的匀强电场.A板上有一小孔(它的存在对两板间匀强电场分布的影响可忽略不计),孔的下沿右侧有一条与板垂直的水平光滑绝缘轨道,一个质量为m,电荷量为g(g>0)的小球(可视为质点),在外力作用下静止在轨道的中点P处.孔的下沿左侧也有一与板垂直的水平光滑绝缘轨道,轨道上距A板L处有一固定档板,长为L的轻弹簧左端固定在挡板上,右端固定一块轻小的绝缘材料制成的薄板Q.撤去外力释放带电小粒,它将在电场力作用下由静止开始向左运动,穿过小孔后(不与金属板A接触)与薄板Q一起压缩弹簧,由于薄板Q及弹簧的质量都可以忽略不计,可认为小球与Q接触过程中不损失机械能.小球从接触Q开始,经历时间To第一次把弹簧压缩至最短,然后又被弹簧弹回.由于薄板Q的绝缘性能有所欠缺,使得小球每次离开Q瞬间,小球的电荷量都损失一部分,而变成刚与Q接触时小球电荷量的
(k>1)求:
(l)小球第一次接触Q时的速度大小;
(2)假设小球第n次弹回两板间后向右运动的最远处没有到达B板,试导出小球从第n次接触Q,到本次向右运动至最远处的时间Tn的表达式;
(3)若k=2,且小孔右侧的轨道粗糙与带电小球间的滑动摩擦力为f=
,试求带电小球最终停止的位置距P点的距离.
查看习题详情和答案>>
| 1 |
| k |
(l)小球第一次接触Q时的速度大小;
(2)假设小球第n次弹回两板间后向右运动的最远处没有到达B板,试导出小球从第n次接触Q,到本次向右运动至最远处的时间Tn的表达式;
(3)若k=2,且小孔右侧的轨道粗糙与带电小球间的滑动摩擦力为f=
| qE |
| 4 |