2006高考数学试题陕西卷
理科试题(必修+选修II)
注意事项:
1.本试卷分第一部分和第二部分。第一部分为选择题,第二部分为非选择题。
2.考生领到试卷后,须按规定在试卷上填写姓名、准考证号,并在答题卡上填涂对应的试卷类型信息点。
3.所有答案必须在答题卡上指定区域内作答。考试结束后,将本试卷和答题卡一并交回。
第一部分(共60分)
一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共12小题,每小题5分,共60分)
1.已知集合P={x∈N|1≤x≤10},集合Q={x∈R|x2+x-6≤0}, 则P∩Q等于( )
A. {2} B.{1,2} C.{2,3} D.{1,2,3}
2.复数等于( )
A.1-i B.1+i C.-1+ i D.-1-i
3. n→∞lim等于( )
A. 1 B. C. D.0
4.设函数f(x)=loga(x+b)(a>0,a≠1)的图象过点(2,1),其反函数的图像过点(2,8),则a+b等于( )
A.6
B
5.设直线过点(0,a),其斜率为1, 且与圆x2+y2=2相切,则a 的值为( )
A.± B.±2 B.±2 D.±4
6."等式sin(α+γ)=sin2β成立"是"α、β、γ成等差数列"的( )
A.必要而不充分条件 B.充分而不必要条件
C.充分必要条件 D.既不充分又不必要条件
7.已知双曲线 - =1(a>)的两条渐近线的夹角为,则双曲线的离心率为( )
A.2 B. C. D.
8.已知不等式(x+y)( + )≥9对任意正实数x,y恒成立,则正实数a的最小值为( )
A.2 B
9.已知非零向量与满足(+)?=0且?= , 则△ABC为( )
A.三边均不相等的三角形 B.直角三角形
C.等腰非等边三角形 D.等边三角形
10.已知函数f(x)=ax2+2ax+4(0<a<3),若x1<x2,x1+x2=1-a,则( )
A.f(x1)<f(x2) B.f(x1)=f(x2) C.f(x1)>f(x2) D.f(x1)与f(x2)的大小不能确定
11.已知平面α外不共线的三点A,B,C到α的距离都相等,则正确的结论是( )
A.平面ABC必平行于α B.平面ABC必与α相交
C.平面ABC必不垂直于α D.存在△ABC的一条中位线平行于α或在α内
12.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a,b,c,d对应密文a+2b,2b+c,
A.4,6,1,7 B.7,6,1,
第二部分(共90分)
二.填空题:把答案填在答题卡相应题号后的横线上(本大题共4小题,每小题4分,共16分)。
13.cos43°cos77°+sin43°cos167°的值为
14.(3x-)12展开式x-3的系数为 (用数字作答)
15.水平桌面α上放有4个半径均为2R的球,且相邻的球都相切(球心的连线构成正方形).在这4个球的上面放1个半径为R的小球,它和下面4个球恰好都相切,则小球的球心到水平桌面α的距离是
16.某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,甲和丙只能同去或同不去,则不同的选派方案共有 种
三.解答题:解答应写出文字说明,证明过程或演算步骤(本大题共6小题,共74分)。
17.(本小题满分12分)
已知函数f(x)=sin(2x-)+2sin2(x-) (x∈R)
(Ⅰ)求函数f(x)的最小正周期 ; (2)求使函数f(x)取得最大值的x的集合.
18. (本小题满分12分)
甲、乙、丙3人投篮,投进的概率分别是, , .
(Ⅰ)现3人各投篮1次,求3人都没有投进的概率;
(Ⅱ)用ξ表示乙投篮3次的进球数,求随机变量ξ的概率分布及数学期望Eξ.
19. (本小题满分12分)
如图,α⊥β,α∩β=l , A∈α, B∈β,点A在直线l 上的射影为A1, 点B在l的射影为B1,已知AB=2,AA1=1, BB1=, 求:
(Ⅰ) 直线AB分别与平面α,β所成角的大小; (Ⅱ)二面角A1-AB-B1的大小.
20. (本小题满分12分)
已知正项数列{an},其前n项和Sn满足10Sn=an2+5an+6且a1,a3,a15成等比数列,求数列{an}的通项an .
21. (本小题满分12分)
如图,三定点A(2,1),B(0,-1),C(-2,1); 三动点D,E,M满足=t, = t , =t , t∈[0,1]. (Ⅰ) 求动直线DE斜率的变化范围; (Ⅱ)求动点M的轨迹方程.
22.(本小题满分14分)
已知函数f(x)=x3-x2+ + , 且存在x0∈(0, ) ,使f(x0)=x0.
(I)证明:f(x)是R上的单调增函数;设x1=0, xn+1=f(xn); y1=, yn+1=f(yn),
其中 n=1,2,……
(II)证明:xn<xn+1<x0<yn+1<yn;
(III)证明: < .
一、选择题
题号
1
2
3
4
5
6
7
8
9
10
11
12
答案
B
C
B
C
B
A
D
B
D
A
D
C
1.已知集合P={x∈N|1≤x≤10}={1,2,3,……,10},集合Q={x∈R | x2+x-6≤0} =, 所以P∩Q等于{1,2} ,选B.
2.复数=,选C.
3. n→∞lim=
=,选B.
4.函数f(x)=loga(x+b)(a>0,a≠1)的图象过点(2,1),其反函数的图象过点(2,8),
则,∴,或(舍),b=1,∴a+b=4,选C.
5.设直线过点(0,a),其斜率为1, 且与圆x2+y2=2相切,设直线方程为,圆心(0,0)道直线的距离等于半径,∴ ,∴ a 的值±2,选B.
6.若等式sin(α+γ)=sin2β成立,则α+γ=kπ+(-1)k?2β,此时α、β、γ不一定成等差数列,若α、β、γ成等差数列,则2β=α+γ,等式sin(α+γ)=sin2β成立,所以“等式sin(α+γ)=sin2β成立”是“α、β、γ成等差数列”的.必要而不充分条件。选A.
7.已知双曲线(a>)的两条渐近线的夹角为,则,∴ a2=6,双曲线的离心率为 ,选D.
8.已知不等式(x+y)()≥9对任意正实数x,y恒成立,则≥≥9,∴ ≥2或≤-4(舍去),所以正实数a的最小值为4,选B.
9.已知非零向量与满足()?=0,即角A的平分线垂直于BC,∴ AB=AC,又= ,∠A=,所以△ABC为等边三角形,选D.
10.已知函数f(x)=ax2+2ax+4(0<a<3),二次函数的图象开口向上,对称轴为,0<a<3,∴ x1+x2=1-a∈(-2,1),x1与x2的中点在(-1,)之间,x1<x2,∴ x2到对称轴的距离大于x1到对称轴的距离,∴ f(x1)<f(x2) ,选A.
11.已知平面α外不共线的三点A、B、C到α的距离都相等,则可能三点在α的同侧,即.平面ABC平行于α,这时三条中位线都平行于平面α;也可能一个点A在平面一侧,另两点B、C在平面另一侧,则存在一条中位线DE//BC,DE在α内,所以选D.
12.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a,b,c,d对应密文a+2b,2b+c,
则,解得,解密得到的明文为C.
二、填空题
13.- 14.594 15.3R 16.600
13.cos43°cos77°+sin43°cos167°==-.
14.(3x-)12展开式中,x-3项为=594,的系数是594.
15.水平桌面α上放有4个半径均为2R的球,且相邻的球都相切(球心的连线构成正方形).在这4个球的上面放1个半径为R的小球,它和下面4个球恰好都相切,5个球心组成一个正四棱锥,这个正四棱锥的底面边长为4R,侧棱长为3R,求得它的高为R,所以小球的球心到水平桌面α的距离是3R.
16.某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,甲和丙只能同去或同不去,可以分情况讨论,① 甲、丙同去,则乙不去,有=240种选法;②甲、丙同不去,乙去,有=240种选法;③甲、乙、丙都不去,有种选法,共有600种不同的选派方案.
三、解答题
17.解:(Ⅰ) f(x)=sin(2x-)+1-cos2(x-)
= 2[sin2(x-)- cos2(x-)]+1
=2sin[2(x-)-]+1
= 2sin(2x-) +1
∴ T==π
(Ⅱ)当f(x)取最大值时, sin(2x-)=1,有 2x- =2kπ+
即x=kπ+ (k∈Z) ∴所求x的集合为{x∈R|x= kπ+ , (k∈Z)}.
18.解: (Ⅰ)记"甲投篮1次投进"为事件A1 , "乙投篮1次投进"为事件A2 , "丙投篮1次投进"为事件A3, "3人都没有投进"为事件A . 则 P(A1)= , P(A2)= , P(A3)= ,
∴ P(A) = P()=P()?P()?P()
= [1-P(A1)] ?[1-P (A2)] ?[1-P (A3)]=(1-)(1-)(1-)=
∴3人都没有投进的概率为 .
(Ⅱ)解法一: 随机变量ξ的可能值有0,1,2,3), ξ~ B(3, ),
P(ξ=k)=C3k()k()3-k (k=0,1,2,3) , Eξ=np = 3× = .
解法二: ξ的概率分布为:
ξ
0
1
2
3
P
Eξ=0×+1×+2×+3×= .
19.解法一: (Ⅰ)如图, 连接A1B,AB1, ∵α⊥β, α∩β=l ,AA1⊥l, BB1⊥l,
∴AA1⊥β, BB1⊥α. 则∠BAB1,∠ABA1分别是AB与α和β所成的角.
Rt△BB
Rt△AA1B中, AA1=1,AB=2, sin∠ABA1= = , ∴∠ABA1= 30°.
故AB与平面α,β所成的角分别是45°,30°.
(Ⅱ) ∵BB1⊥α, ∴平面ABB1⊥α.在平面α内过A1作A1E⊥AB1交AB1于E,则A1E⊥平面AB1B.过E作EF⊥AB交AB于F,连接A
在Rt△ABB1中,∠BAB1=45°,∴AB1=B1B=. ∴Rt△AA1B中,A1B== = . 由AA1?A1B=A
∴在Rt△A1EF中,sin∠A1FE = = , ∴二面角A1-AB-B1的大小为arcsin.
解法二: (Ⅰ)同解法一.
(Ⅱ) 如图,建立坐标系, 则A1(0,0,0),A(0,0,1),B1(0,1,0),B(,1,0).在AB上取一点F(x,y,z),则存在t∈R,使得=t , 即(x,y,z-1)=t(,1,-1), ∴点F的坐标为(t, t,1-t).要使⊥,须?=0, 即(t, t,1-t) ?(,1,-1)=0, 2t+t-(1-t)=0,解得t= , ∴点F的坐标为(,-, ), ∴=(,, ). 设E为AB1的中点,则点E的坐标为(0,, ). ∴=(,-,).
又?=(,-,)?(,1,-1)= - - =0, ∴⊥, ∴∠A1FE为所求二面角的平面角.
又cos∠A1FE= = = = = ,
∴二面角A1-AB-B1的大小为arccos.
20.解: ∵10Sn=an2+5an+6, ① ∴
又10Sn-1=an-12+5an-1+6(n≥2),②
由①-②得 10an=(an2-an-12)+6(an-an-1),即(an+an-1)(an-an-1-5)=0
∵an+an-1>0 , ∴an-an-1=5 (n≥2).
当a1=3时,a3=13,a15=73. a1, a3,a15不成等比数列∴a1≠3;
当a1=2时, a3=12, a15=72, 有
a32=a
21.解法一: 如图, (Ⅰ)设D(x0,y0),E(xE,yE),M(x,y).由=t, = t , 知(xD-2,yD-1)=t(-2,-2). ∴ 同理 . ∴kDE = = = 1-2t.
∴t∈[0,1] , ∴kDE∈[-1,1].
(Ⅱ) ∵=t ∴(x+2t-2,y+2t-1)=t(-2t+2t-2,2t-1+2t-1)=t(-2,4t-2)=(-2t,4t2-2t). ∴ , ∴y= , 即x2=4y. ∵t∈[0,1], x=2(1-2t)∈[-2,2].
即所求轨迹方程为: x2=4y, x∈[-2,2]
解法二: (Ⅰ)同上.
(Ⅱ) 如图, =+ = + t = + t(-) = (1-t) +t,
= + = +t = +t(-) =(1-t) +t,
= += + t= +t(-)=(1-t) + t
= (1-t2) + 2(1-t)t+t2 .
设M点的坐标为(x,y),由=(2,1), =(0,-1), =(-2,1)得
消去t得x2=4y, ∵t∈[0,1], x∈[-2,2].
故所求轨迹方程为: x2=4y, x∈[-2,2]
22.解: (I)∵f '(x)=3x2-2x+ = 3(x-)2+ >0 , ∴f(x)是R上的单调增函数.
(II)∵0<x0< , 即x1<x0<y1.又f(x)是增函数, ∴f(x1)<f(x0)<f(y1).即x2<x0<y2.
又x2=f(x1)=f(0)=>0 =x1, y2=f(y1)=f()=<=y1,综上, x1<x2<x0<y2<y1.
用数学归纳法证明如下:
(1)当n=1时,上面已证明成立.
(2)假设当n=k(k≥1)时有xk<xk+1<x0<yk+1<yk .
当n=k+1时,由f(x)是单调增函数,有f(xk)<f(xk+1)<f(x0)<f(yk+1)<f(yk),∴xk+1<xk+2<x0<yk+2<yk+1
由(1)(2)知对一切n=1,2,…,都有xn<xn+1<x0<yn+1<yn.
(III) = = yn2+xnyn+xn2-(yn+xn)+ ≤(yn+xn)2-(yn+xn)+
=[(yn+xn)-]2+ . 由(Ⅱ)知 0<yn+xn<1.∴- < yn+xn- < , ∴ < ()2+ =