理科数学试题卷 第页(共8页
上饶市2008-2009学年度高三年级第一次模拟考试
理科数学试题卷
命题人:黎金传 何耀煌 席米有 董乐华
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分.考试时间120分钟.
参考公式
如果事件A、B互斥,那么 球的表面积公式
P(A+B)=P(A)+P(B) S=4πR2
如果事件A、B相互独立,那么 其中R表示球的半径
P(A?B)=P(A)?P(B) 球的体积公式
如果事件A在一次试验中发生的概率是P,那么 V=πR3
n次独立重复试验中恰好发生k次的概率 其中R表示球的半径
Pn(k)=CPk(1-P)n-k
第Ⅰ卷
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.若复数z=(其中i为虚数单位),则|z+1|等于
A.0 B
2.已知{an}为等差数列,a1=15,S5=55,则过点P(3,a2),Q(4,a4)的直线的斜率为
A.4 B. C.-4 D.-
3.(x-)9的展开式的第3项是
A.-84x3 B.84x
4.函数y=3sin(2x+)的图象按向量a平移后所得的图象关于点(-,0)中心对称,则向量a的坐标可能为
A.(-,0) B.(-,0) C.(,0) D.(,0)
5.如图,在△ABC中,tan =,?=0,则过点C,以A,H为两焦点的双曲线的离心率为
A. B
6.将正方形ABCD沿对角线AC折起,当以A、B、C、D四点为顶点的三棱锥体积最大时,异面直线AD与BC所成的角为
A. B. C. D.
7.若直线mx+ny=4和⊙O:x2+y2=4没有交点,则过点(m,n)的直线与椭圆+=1的交点个数为
A.至多一个 B.2个 C.1个 D.0个
8.已知二次函数f(x)=ax2+bx+c的导函数f′(x)满足:f′(0)>0,若对任意实数x,有
f(x)≥0,则的最小值为
A. B
9.已知平面α与β所成的角为80°,P为α,β外一定点,过点P的直线与α,β所成角都是30°,则这样的直线有且仅有
A.1条 B.2条 C.3条 D.4条
10.已知函数f(x)=x3-3x,过点(1,m)可作曲线y=f(x)的三条切线,则m的取值范围是
A.(-3,-2) B.(-2,3) C.(-1,2) D.(-1,1)
11.若自然数n使得作竖式加法n+(n+1)+(n+2)的和不产生进位现象,则称n为“可连续”.例如:32是“可连续”,因32+33+34不产生进位现象;23不是“可连续”,因23+24+25产生进位现象.如果自然数n∈(1000,10000),那么,“可连续”自然数n的个数为
A.27 B
12.如图,有一面墙(墙的长度足够长),在墙边P、Q处各有一棵树与墙的距离均为
第Ⅱ卷
二、填空题:本大题共4小题,每小题4分,共16分,答案填写在题中横线上.
13.△ABC中,三内角A,B,C所对边的长分别为a,b,c,已知B=60°,不等式-x2+6x-8>0的解集为{x|a<x<c},则b= .
14.已知集合A={(x,y)||x|≤1,|y|≤1,x,y∈R},B={(x,y)|(x-a)2+(y-b)2≤1,x,y∈R,(a,b)∈A},则集合B所表示的图形的面积是 .
15.已知+=1(m>0,n>0),当mn取得最小值时,直线y=-x+2与曲线+=1的交点个数为 .
16.对一切实数x,令[x]为不大于x的最大整数,则函数f(x)=[x]称为高斯函数或取整函数.若an=f(),n∈N*,Sn为数列{an}的前n项和,则= .
三、解答题:本大题共6小题,满分74分.解答应写出必要的文字说明、推理过程或演算步骤.
17.(本小题满分12分)
已知a=(2cos ,tan(+)),b=(sin(+),tan(-)),令f(x)=a?b.
(1)求f(x)的单调增区间;
(2)若x∈[0,)时,f(x)-m>1恒成立,求m的取值范围.
18.(本小题满分12分)
美国次贷危机引发2008年全球金融动荡,波及中国股市,甲、乙、丙、丁四人打算趁目前股市低迷之际“抄底”.若四人商定在圈定的6只股票中各自随机购买一只(假定购买时每支股票的基本情况完全相同).
(1)求甲、乙、丙、丁四人恰好买到同一只股票的概率;
(2)求甲、乙、丙、丁四人中至多有两人买到同一只股票的概率;
(3)由于国家采取了积极的救市措施,股市渐趋“回暖”.若某人今天按上一交易日的收盘价20元/股,买入某只股票1000股(10手),且预计今天收盘时,该只股票比上一交易日的收盘价上涨10%(涨停)的概率为0.6.持平的概率为0.2,否则将下跌10%(跌停),求此人今天获利的数学期望(不考虑佣金,印花税等交易费用).
19.(本小题满分12分)
如图,在各棱长均为2的三棱柱ABC-A1B
(1)求棱A1B1与平面AB
(2)已知D点满足=+,在直线AA1上是否存在点P,使DP∥平面AB
20.(本小题满分12分)
已知等差数列{an}满足:an+1>an(n∈N*),a1=1,该数列的前三项分别加上1,1,3后顺次成为等比数列{bn}的前三项.
(1)分别求数列{an},{bn}的通项公式an,bn;
(2)设Tn=++…+(n∈N*),若Tn+-<c(c∈Z)恒成立,求c的最小值.
21.(本小题满分12分)
标准椭圆+=1(a>b>0)的两焦点为F1、F2,M(,1)在椭圆上,且?=0.
(1)求椭圆方程;
(2)若N在椭圆上,O为原点,直线l的方向向量为,若l交椭圆于A、B两点,且NA、NB与x轴围成的三角形是等腰三角形(两腰所在的直线是NA、NB),则称N点为椭圆的特征点,求该椭圆的特征点.
22.(本小题满分14分)
已知函数f(x)=ln x-ax2-2x(a<0).
(1)若函数f(x)存在单调递减区间,求a的取值范围;
(2)若a=-且关于x的方程f(x)=-x+b在[1,4]上恰有两个不相等的实数根,求实数b的取值范围;
(3)设各项为正的数列{an}满足:a1=1,an+1=ln an+an+2,n∈N*,求证:an≤2n-1.
理科数学参考答案和评分标准
一、选择题 BCDC BCBD DADC
二、填空题 13.2 14.12+π 15.2 16.100
三、解答题
17.解:当±≠kπ+时,1分
有:f(x)=2sin(+)?cos +tan(+)?tan(-)
=sin x+2cos2-1=sin x+cos x=sin(x+).4分
(1)令-+2kπ≤x+≤+2kπ,得2kπ-≤x≤2kπ+.
又由±≠kπ+,得x≠2kπ±.6分
∴f(x)的单调增区间是:[2kπ-,2kπ-),(2kπ-,2kπ+](k∈Z).8分
(2)当x∈[0,)时,x+∈[,),则sin(x+)有最小值.10分
此时f(x)min=1,故由题意得1-m>1⇒m<0.12分
18.解:(1)四人恰好买到同一只股票的概率P1=6××××=.4分
(2)(法一)四人中有两人买到同一只股票的概率P2==.
四人中每人买到不同的股票的概率P3===.
所以四人中至多有两人买到同一只股票的概率P=P2+P3=+==.8分
(法二)四人中有三人恰好买到同一只股票的概率P4===.
所以四人中至多有两人买到同一只股票的概率P=1-P1-P4==.8分
(3)每股今天获利钱数ξ的分布列为:
ξ
2
0
-2
P
0.6
0.2
0.2
所以,10手股票在今日交易中获利钱数的数学期望为
1000Eξ=1000×[2×0.6+0×0.2+(-2)×0.2]=800.12分
19.解:(法一)(1)∵AC1=2,∴∠A
以O为坐标原点,建立如图空间直角坐标系.2分
则A(0,-1,0),B(,0,0),A1(0,0,),C(0,1,0),B1(,1,).
∴=(,1,0),=(,2,),=(0,2,0).
设平面AB
由cos〈,n〉=-得:棱A1B1与平面AB
(2)设存在点P符合,且点P坐标设为P(0,y,z),7分
=+=(-2,0,0),∴D(-,0,0).
∴=(,y,z).平面AB
∴?n=0,得z=,由=λ得:∴y=0,∴P(0,0,).10分
又DP⊄平面AB
(法二)(1)如图可得,B
∴AB1=,AC=2,∴AC⊥B
设B到平面AB
设棱AB与平面AB
又AB∥A1B1,∴A1B1与平面AB
(2)=+,∴四边形ABCD是平行四边形,∴==,8分
∴CDA1B1是平行四边形.∴A1D∥B
又A1D⊄面AB
∴A1D∥平面AB
20.解:(1)设d、q分别为数列{an}、数列{bn}的公差与公式.
由题意知,a1=1,a2=1+d,a3=1+2d,等比数列{bn}的前三项是2,2+d,4+2d,
∴(2+d)2=2(4+2d)⇒d=±2.2分
∵an+1>an,∴d>0.∴d=2,∴an=2n-1(n∈N*).4分
由此可得b1=2,b2=4,q=2,∴bn=2n(n∈N*).5分
(2)Tn=++…+=+++…+,①
当n=1时,Tn=+++…+. ②
①-②,得:Tn=+2(++…+)-=+(1-)-.
∴Tn=3--=3-.9分
∴Tn+-=3-<3.10分
∴满足条件Tn+-<c(c∈Z)恒成立的最小整数值为c=3.12分
21.解:(1)在Rt△F1MF2中,|OM|==2知c=2,
则解得a2=6,b2=2,∴椭圆方程为+=1.4分
(2)设N(m,n)(m≠0),l为y=x+t,A(x1,y1),B(x2,y2),
由y=x+t与+=1得(+)x2+tx+-1=0,6分
由点N(m,n)在椭圆上知,+=代入得+tx+-1=0,
∴x1+x2=-mnt,x1x2=m2(-1),①8分
∴kNA+kNB=+=
=
将①式代入得kNA+kNB=,
又∵NA、NB与x轴围成的三角形是等腰三角形得kNA+kNB=0,10分
∴n2=1代入+=1得m2=3,∴N(±,±1).12分
22.解:(1)f′(x)=-(x>0).依题意f′(x)<0在x>0时有解,即ax2+2x-1>0在x>0有解.则Δ=4+
此时,-1<a<0.4分
(2)a=-,f(x)=-x+b⇔x2-x+ln x-b=0.
设g(x)=x2-x+ln x-b(x>0),则g′(x)=.列表:
x
(0,1)
1
(1,2)
2
(2,4)
g′(x)
+
0
-
0
+
g(x)
?
极大值
?
极小值
?
∴g(x)极小值=g(2)=ln 2-b-2,g(x)极大值=g(1)=-b-,g(4)=-b-2+2ln 2.6分
∵方程g(x)=0在[1,4]上恰有两个不相等的实数根,
则解得:ln 2-2<b≤-.9分
(3)设h(x)=ln x-x+1,x∈[1,+∞),则h′(x)=-1≤0,
∴h(x)在[1,+∞)为减函数,且h(x)max=h(1)=0,故当x≥1时有ln x≤x-1.
∵a1=1,假设ak≥1(k∈N*),则ak+1=ln ak+ak+2>1,故an≥1(n∈N*).
从而an+1=ln an+an+2≤2an+1,∴1+an+1≤2(1+an)≤…≤2n(1+a1).
即1+an≤2n,∴an≤2n-1.14分