安徽省合肥七中2009届高三第五次月考试题
数学(文科)命题人:孙玉国
第Ⅰ卷(选择题 共60分)
一、选择题:本大题共12题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 若集合A={x|x2-x<0},B={x|-1<x<3},则A∩B等于( )
A.{x|0<x<1} B.{x|-1<x<3} C.{x|1<x<3} D.
2.是( )
A.最小正周期为的偶函数 B.最小正周期为的奇函数
C.最小正周期为的偶函数 D.最小正周期为的奇函数
3. 若复数(a2
A.1
B
4.在边长为1的等边中,设( )
A. B.0 C. D.3
5.已知相异直线a,b和不重合平面,则a∥b的一个充分条件是( )
A.a∥, b∥ B.a∥,b∥,∥
C.a⊥,b⊥,∥ D.⊥,a ⊥,b ∥
6. 按如右图所示的程序框图运算,若输入,则输出 ( )
A.2 B. 3 C.4 D. 5
7. 已知函数在区间()是增函数,
则常数的取值范围是( )
A. B. C. D.
8.在等差数列{an}中,其前n项和为Sn.若a2,a10是方程x2+12x-8=0的两个根,
那么S11的值为( )
A.44 B.-44 C.66 D.-66
9.设P为曲线C:上的点,且曲线C在点P处的切线的倾斜角的取值范围为,则点P的横坐标的取值范围为( )
A. B. C. D.
10.函数f(x)的图象是如图所示的折线段OAB,点A坐标
为(1,2),点B坐标为(3,0).定义函数.
则函数g(x)最大值为( )
A.0 B.2 C.1 D.4
11. 已知集合M是满足下列条件的函数的全体;
①当时,函数值为非负实数;
②对于任意的s、,,都有
在四个函数,,,中,属于集合M的函数有( )个
A.1 B.2 C.3 D.4
12. 设,二次函数的图像为下列之一,则的值为( )
A.1 B.-1 C. D.
合肥七中2009届高三第五次月考试题答题卷
数学(文科)
题号
1
2
3
4
5
6
7
8
9
10
11
12
答案
第Ⅱ卷(非选择题 共90分)
二、填空题:本大题共4题,每小题4分,共16分。把答案填在题中横线上。
13、一个球的内接长方体的长、宽、高分别为1、2、3,则这个球的表面积是 ;
14、若,则 ;
15、函数的值域为R,则k的取值范围是 ;
16、对于定义在R上的函数,有下述命题:
①若是奇函数,则的图象关于点A(1,0)对称;
②若函数的图象关于直线对称,则为偶函数;
③若对,有的周期为2;
④函数的图象关于直线对称.
其中正确命题的序号是 。
三、解答题:本大题共6题,共74分。解答应写出文字说明、证明过程或演算步骤。
17.(本小题满分12分)
已知,设.
(1)求函数的最小正周期;
(2)当时,求函数的最大值及最小值.
18.(本小题满分12分)
如图,多面体的直观图及三视图如图所示,分别为的中点.
(1)求证:平面;
(2)求多面体的体积.
19.(本小题满分12分)
从(0,1)中随机地抽取两个数,求下列情况的概率:
(1)两数之和小于;
(2)两数的平方和小于。
20.(本小题满分12分)
在数列中,,.
(1)设.证明:数列是等差数列;
(2)求数列的前项和.
21.(本小题满分12分)
已知在上是增函数,在[0,3]上是减函数,且方程有三个实根.
(1)求b的值;
(2) 求实数的取值范围。
。
22.(本小题满分14分)
椭圆的左、右焦点分别为F1、F2,过F1的直线l与椭圆交于A、B两点.
(1)如果点A在圆(c为椭圆的半焦距)上,且|F1A|=c,求椭圆的离心率;
(2)若函数的图象,无论m为何值时恒过定点(b,a),
求的取值范围。
合肥七中2009届高三第五次月考试题
一、选择题 A D B A C B A D A C B B
二、填空题
13. 14π. 14.. 15. .16.①②③
三、解答题
17.(1) =
=
==
==.
∴的最小正周期.
(2) ∵, ∴.
∴当,即=时,有最大值;
当,即=时,有最小值-1.
18. (1)连结,则是的中点,
在△中,,
且平面,平面,
∴∥平面
(2) 因为平面,平面,
,
又⊥,所以,⊥平面,
∴四边形 是矩形,
且侧面⊥平面
取的中点,,
且平面.
所以,多面体的体积
19.(1) (2)
20.(1),
∴ ,于是,
∴为首相和公差均为1的等差数列.
由 , 得,
∴.
(2),
,
两式相减,得,
解出
21.(1)∵
在上是增函数,在[0,3]上是减函数.
∴ 当x=0时取得极小值.∴. ∴b=0
(2) ∵方程有三个实根, ∴a≠0
∴=0的两根分别为
又在上是增函数,在[0,3]上是减函数.
∴在时恒成立,在时恒成立.
由二次函数的性质可知.
∴. 故实数的取值范围为.
22. 解:(1)∵点A在圆,
由椭圆的定义知:|AF1|+|AF2|=2a,
(2)∵函数
∴
点F1(-1,0),F2(1,0),
①若,
∴
②若AB与x轴不垂直,设直线AB的斜率为k,则AB的方程为y=k(x+1)
由…………(*)
方程(*)有两个不同的实根.
设点A(x1,y1),B(x2,y2),则x1,x2是方程(*)的两个根
由①②知