网址:http://m.1010jiajiao.com/paper/timu/5159821.html[举报]
6.()已知函数f(x)=lg[(a2-1)x2+(a+1)x+1]
(1)若f(x)的定义域为(-∞,+∞),求实数a的取值范围;
(2)若f(x)的值域为(-∞,+∞),求实数a的取值范围.
(2)求函数f(x)的最小值.
参考答案
难点磁场
(1)证明:先将f(x)变形:f(x)=log3[(x-2m)2+m+],
当m∈M时,m>1,∴(x-m)2+m+>0恒成立,故f(x)的定义域为R.
反之,若f(x)对所有实数x都有意义,则只须x2-4mx+4m2+m+>0,令Δ<0,即16m2-4(4m2+m+)<0,解得m>1,故m∈M.
(2)解析:设u=x2-4mx+4m2+m+,∵y=log3u是增函数,∴当u最小时,f(x)最小.而u=(x-2m)2+m+,显然,当x=m时,u取最小值为m+,此时f(2m)=log3(m+)为最小值.
(3)证明:当m∈M时,m+=(m-1)+ +1≥3,当且仅当m=2时等号成立.
∴log3(m+)≥log33=1.
歼灭难点训练
一、1.解析:∵m1=x2在(-∞,-)上是减函数,m2=在(-∞,-)上是减函数,
∴y=x2+在x∈(-∞,-)上为减函数,
∴y=x2+ (x≤-)的值域为[-,+∞.
答案:B
2.解析:令=t(t≥0),则x=.
∵y=+t=- (t-1)2+1≤1
∴值域为(-∞,1.
答案:A
二、3.解析:t=+16×()2/V=+≥2=8.
答案:8
4.解析:由韦达定理知:x1+x2=m,x1x2=,∴x12+x22=(x1+x2)2-2x1x2=m2-=(m-)2-,又x1,x2为实根,∴Δ≥0.∴m≤-1或m≥2,y=(m-)2-在区间(-∞,1)上是减函数,在[2,+∞上是增函数又抛物线y开口向上且以m=为对称轴.故m=1时,
ymin=.
答案:-1
三、5.解:(1)利润y是指生产数量x的产品售出后的总收入R(x)与其总成本C(x)之差,由题意,当x≤5时,产品能全部售出,当x>5时,只能销售500台,所以
y=
(2)在0≤x≤5时,y=-x2+4.75x-0.5,当x=-=4.75(百台)时,ymax=10.78125(万元),当x>5(百台)时,y<12-0.25×5=10.75(万元),
所以当生产475台时,利润最大.
(3)要使企业不亏本,即要求
解得5≥x≥4.75-≈0.1(百台)或5<x<48(百台)时,即企业年产量在10台到4800台之间时,企业不亏本.
6.解:(1)依题意(a2-1)x2+(a+1)x+1>0对一切x∈R恒成立,当a2-1≠0时,其充要条件是,
∴a<-1或a>.又a=-1时,f(x)=0满足题意,a=1时不合题意.故a≤-1或a>为所求.
(2)依题意只要t=(a2-1)x2+(a+1)x+1能取到(0,+∞)上的任何值,则f(x)的值域为R,故有,解得1<a≤,又当a2-1=0即a=1时,t=2x+1符合题意而a=-1时不合题意,∴1≤a≤为所求.
7.解:设每周生产空调器、彩电、冰箱分别为x台、y台、z台,由题意得:
x+y+z=360 ①
②x>0,y>0,z≥60. ③
假定每周总产值为S千元,则S=4x+3y+2z,在限制条件①②③之下,为求目标函数S的最大值,由①②消去z,得y=360-3x. ④
将④代入①得:x+(360-3x)+z=360,∴z=2x ⑤
∵z≥60,∴x≥30. ⑥
再将④⑤代入S中,得S=4x+3(360-3x)+2.2x,即S=-x+1080.由条件⑥及上式知,当x=30时,产值S最大,最大值为S=-30+1080=1050(千元).得x=30分别代入④和⑤得y=360-90=270,z=2×30=60.
∴每周应生产空调器30台,彩电270台,冰箱60台,才能使产值最大,最大产值为1050千元.
8.解:(1)如图所示:设BC=a,CA=b,AB=c,则斜边AB上的高h=,
∴S1=πah+πbh=,
∴f(x)= ①
又
代入①消c,得f(x)=.
在Rt△ABC中,有a=csinA,b=ccosA(0<A<,则
x==sinA+cosA=sin(A+).∴1<x≤.
(2)f(x)= +6,设t=x-1,则t∈(0, -1),y=2(t+)+6在(0,-1上是减函数,∴当x=(-1)+1=时,f(x)的最小值为6+8.