在解答某些数学问题时,有时会有多种情况,对各种情况加以分类,并逐类求解,然后综合求解,这就是分类讨论法。分类讨论是一种逻辑方法,也是一种数学思想。有关分类讨论思想的数学问题具有明显的逻辑性、综合性、探索性,能训练人的思维条理性和概括性,所以在高考试题中占有重要的位置。
分类原则:分类的对象是确定的,标准是统一的,不遗漏、不重复、分层次,不越级讨论。
分类方法:明确讨论对象,确定对象的全体 → 确定分类标准,正确进行分类 → 逐步进行讨论,获取阶段性结果 → 归纳小结,综合得出结论。
Ⅰ、再现性题组:
1. 集合A={x||x|≤4,x∈R},B={x||x-3|≤a,x∈R},若AB,那么a的范围是_____。
A. 0≤a≤1 B. a≤1 C. a<1 D. 0<a<1
2. 若a>0且a≠1,p=log(a+a+1),q=log(a+a+1),则p、q的大小关系是_____。
A. p=q B. p<q C. p>q D.当a>1时,p>q;当0<a<1时,p<q
3. 函数y=+++的值域是_________。
4. 若θ∈(0, ),则的值为_____。
A. 1或-1 B. 0或-1 C. 0或1 D. 0或1或-1
5. 函数y=x+的值域是_____。
A. [2,+∞) B. (-∞,-2]∪[2,+∞) C. (-∞,+∞) D. [-2,2]
6. 正三棱柱的侧面展开图是边长分别为2和4的矩形,则它的体积为_____。
A. B. C. D. 或
7. 过点P(2,3),且在坐标轴上的截距相等的直线方程是_____。
A. 3x-2y=0 B. x+y-5=0 C. 3x-2y=0或x+y-5=0 D.不能确定
Ⅱ、示范性题组:
例1. 设0<x<1,a>0且a≠1,比较|log(1-x)|与|log(1+x)|的大小。
[分析] 对数函数的性质与底数a有关,而分两类讨论。
[解] ∵ 0<x<1 ∴ 0<1-x<1 , 1+x>1
① 当0<a<1时,|log(1-x)|-|log(1+x)|=log(1-x)-[-log(1+x)]=log(1-x)>0;
② 当a>1时,|log(1-x)|-|log(1+x)|=…
由①、②可知,…
例2. 已知集合A和集合B各含有12个元素,A∩B含有4个元素,试求同时满足下面两个条件的集合C的个数: ①. CA∪B且C中含有3个元素; ②. C∩A≠φ 。
[分析] 由已知并结合集合的概念,C中的元素分两类:①属于A 元素;②不属于A而属于B的元素。并由含A中元素的个数1、2、3,而将取法分三种。
[解] C.C+C.C+C.C=1084
[另解](排除法):
[注]本题是“包含与排除”的基本问题,正确地解题的前提是正确分类,达到分类完整及每类互斥的要求。并且要确定C中元素如何取法。
例3. 设{a}是由正数组成的等比数列,S是前n项和。 ①. 证明: <lgS; ②.是否存在常数c>0,使得=lg(S-c)成立?并证明结论。(95年全国理)
[分析] 要证的不等式和讨论的等式可以进行等价变形;再应用比较法而求解。
[解] 设公比q,则a>0,q>0
①. …
②. 要使=lg(S-c)成立,则必有(S-c)(S-c)=(S-c),
分两种情况讨论如下:
当q=1时,S=na,则
(S-c)(S-c)-(S-c)=(na-c)[(n+2)a-c]-[(n+1)a-c]=-a<0
当q≠1时,S=,则(S-c)(S-c)-(S-c)=[-c][ -c]-[-c]=-aq[a-c(1-q)]
∵ aq≠0 ∴ a-c(1-q)=0即c=
而S-c=S-=-<0 ∴对数式无意义
由上综述,不存在常数c>0, 使得=lg(S-c)成立。
[注] 本例由所用公式的适用范围而导致分类讨论。该题文科考生改问题为:证明>logS 。
例1、例2、例3属于涉及到数学概念、定理、公式、运算性质、法则等是分类讨论的问题或者分类给出的,我们解决时按要求进行分类。(概念、性质型)
例4. 设函数f(x)=ax-2x+2,对于满足1<x<4的一切x值都有f(x)>0,求实数a的取值范围。
1
4 x
1
4 x |
[分析] 含参的一元二次函数在有界区间上的值域问题,先对开口方向讨论,再对其抛物线对称轴的位置进行分类讨论。(也属数形结合法)
[解]当a>0时,f(x)=a(x-)+2-
∴ 或或
∴ a≥1或<a<1或φ 即 a>;
当a<0时,,解得φ;
当a=0时,f(x)=-2x+2, f(1)=0,f(4)=-6, ∴不合题意
由上而得,实数a的取值范围是a> 。
例5. 解不等式>0 (a为常数,a≠-)
[分析] 含参不等式,参数a决定了2a+1的符号和两根-4a、6a的大小,故对a>0、a=0、-<a<0、a<-分别加以讨论。
[解] 2a+1>0时,a〉-; -4a<6a时,a>0 。 所以分以下四种情况讨论:
当a>0时,(x+4a)(x-6a)>0,解得:x<-4a或x>6a;
当a=0时,x>0,解得:x≠0;
当-<a<0时,(x+4a)(x-6a)>0,解得: x<6a或x>-4a;
当a>-时,(x+4a)(x-6a)<0,解得: 6a<x<-4a 。
综上所述,……
[注] 含参问题,结合参数的意义及对结果的影响而分类讨论。(含参型)
例6. 设a≥0,在复数集C中,解方程:z+2|z|=a 。 (90年全国高考)
[解] ∵ z∈R,由z+2|z|=a得:z∈R; ∴ z为实数或纯虚数
当z∈R时,|z|+2|z|=a,解得:|z|=-1+ ∴ z=±(-1+);
当z为纯虚数时,设z=±yi (y>0), ∴ -y+2y=a 解得:y=1± (0≤a≤1)
由上可得,z=±(-1+)或±(1±)i
[注]本题用标准解法(设z=x+yi再代入原式得到一个方程组,再解方程组)过程十分繁难,而挖掘隐含,对z分两类讨论则简化了数学问题。 (简化型)
[另解] 设z=x+yi,代入得 x-y+2+2xyi=a; ∴
当y=0时,…
例7. 在xoy平面上给定曲线y=2x,设点A(a,0),a∈R,曲线上的点到点A的距离的最小值为f(a),求f(a)的函数表达式。 (本题难度0.40)
[分析] 求两点间距离的最小值问题,先用公式建立目标函数,转化为二次函数在约束条件x≥0下的最小值问题,而引起对参数a的取值讨论。
[解] 设M(x,y)为曲线y=2x上任意一点,则
|MA|=(x-a)+y=(x-a)+2x=x-2(a-1)x+a=[x-(a-1)]+(2a-1)
由于y=2x限定x≥0,所以分以下情况讨论:
当a-1≥0时,x=a-1取最小值,即|MA}=2a-1;
当a-1<0时,x=0取最小值,即|MA}=a;
综上所述,有f(a)= 。
Ⅲ、巩固性题组:
1. 若log<1,则a的取值范围是_____。
A. (0, ) B. (,1) C. (0, )∪(1,+∞) D. (,+∞)
2. 非零实数a、b、c,则+++的值组成的集合是_____。
A. {-4,4} B. {0,4} C. {-4,0} D. {-4,0,4}
3. f(x)=(a-x)|3a-x|,a是正常数,下列结论正确的是_____。
A.当x=2a时有最小值0 B.当x=3a时有最大值0
C.无最大值,且无最小值 D.有最小值但无最大值
4. 设f(x,y)=0是椭圆方程,f(x,y)=0是直线方程,则方程f(x,y)+λf(x,y)=0 (λ∈R)表示的曲线是_____。
A.只能是椭圆 B.椭圆或直线 C.椭圆或一点 D.还有上述外的其它情况
5. 函数f(x)=ax-2ax+2+b (a≠0)在闭区间[2,3]上有最大值5,最小值2,则a、b的值为_____。
A. a=1,b=0 B. a=1,b=0或a=-1,b=3
C. a=-1,b=3 D. 以上答案均不正确
6.方程(x-x-1)=1的整数解的个数是_____。
A. 1 B. 3 C. 4 D. 5
7. 到空间不共面的4个点距离相等的平面的个数是_____。
A. 7 B. 6 C. 5 D. 4
8. z∈C,方程z-3|z|+2=0的解的个数是_____。
A. 2 B. 3 C. 4 D. 5
9. 复数z=a+ai (a≠0)的辐角主值是______________。
10.解关于x的不等式: 2log(2x-1)>log(x-a) (a>0且a≠1)
11.设首项为1,公比为q (q>0)的等比数列的前n项和为S,又设T=,求T 。
12. 若复数z、z、z在复平面上所对应三点A、B、C组成直角三角形,且|z|=2,求z 。
13. 有卡片9张,将0、1、2、…、8这9个数字分别写在每张卡片上。现从中任取3张排成三位数,若6可以当作9用,问可组成多少个不同的三位数。
14. 函数f(x)=(|m|-1)x-2(m+1)x-1的图像与x轴只有一个公共点,求参数m的值及交点坐标。