题目内容
把质量为0.5kg的小球,挂在长为1m的细绳下端,将小球拉到与竖直方向成37°的位置(已知sin37°=0.6,cos37°=0.8),如图所示,求:
(1)此过程中拉力对小球做的功至少是多少?
(2)让小球无初速释放,小球经过轨迹最低点时的速度有多大?
(1)此过程中拉力对小球做的功至少是多少?
(2)让小球无初速释放,小球经过轨迹最低点时的速度有多大?
(1)从P到Q点,有动能定理可知
WF-mgL(1-cosθ)=0-0
WF=mgL(1-cosθ)=0.5×10×1×(1-0.8)J=1J
(2)无初速度释放时,有动能定理可知
mgL(1-cosθ)=
mv2
v=
=
m/s=2m/s
答:(1)此过程中拉力对小球做的功至少是1J
(2)让小球无初速释放,小球经过轨迹最低点时的速度有2m/s
WF-mgL(1-cosθ)=0-0
WF=mgL(1-cosθ)=0.5×10×1×(1-0.8)J=1J
(2)无初速度释放时,有动能定理可知
mgL(1-cosθ)=
1 |
2 |
v=
2gL(1-cosθ) |
2×10×1×(1-0.8) |
答:(1)此过程中拉力对小球做的功至少是1J
(2)让小球无初速释放,小球经过轨迹最低点时的速度有2m/s
练习册系列答案
相关题目