题目内容
【题目】滑板运动是极限运动的鼻祖,许多极限运动项目均由滑板项目延伸而来。如图所示是滑板运动的轨道,BC和DE是两段光滑圆弧形轨道,BC段的圆心为O点、圆心角 θ=60°,半径OC与水平轨道CD垂直,滑板与水平轨道CD间的动摩擦因数μ=0.2。某运动员从轨道上的A点以v0=3m/s的速度水平滑出,在B点刚好沿轨道的切线方向滑入圆弧轨道BC,经CD轨道后冲上DE轨道,到达E点时速度减为零,然后返回.已知运动员和滑板的总质量为m=60kg,B、E两点与水平轨道CD的竖直高度分别为h=2m和H=2.5m.求:
(1)运动员从A点运动到B点过程中,到达B点时的速度大小vB;
(2)水平轨道CD段的长度L;
(3)通过计算说明,第一次返回时,运动员能否回到B点?如能,请求出回到B点时速度的大小;如不能,请求出最后停止的位置距C点的距离.
【答案】(1)vB=6m/s (2) L=6.5m (3)停在C点右侧6m处
【解析】
(1)在B点时有vB=,得vB=6m/s
(2)从B点到E点有,得L=6.5m
(3)设运动员能到达左侧的最大高度为h′,从B到第一次返回左侧最高处有,得h′=1.2m<h=2 m,故第一次返回时,运动员不能回到B点,从B点运动到停止,在CD段的总路程为s,由动能定理可得,得s=19m,s=2L+6 m,故运动员最后停在C点右侧6m处.
练习册系列答案
相关题目